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Abstract. Differential privacy is a framework for protecting the identity of individual data points in the
decision-making process. In this note, we propose a new form of differential privacy, known as tangent dif-
ferential privacy. Compared to the usual differential privacy, which is defined uniformly across data distribu-
tions, tangent differential privacy is tailored to a specific data distribution of interest. It also allows for general
distribution distances such as total variation distance and Wasserstein distance. In the context of risk min-
imization, we demonstrate that entropic regularization ensures tangent differential privacy under relatively
general conditions on the risk function.
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1 Introduction

Differential privacy is a framework for protecting the identity of individual data points
in the machine learning process. The most commonly discussed differential privacy is
ǫ-differential privacy. A randomized algorithm is called ǫ-differential private if, for any
two input data distributions that differ by one element, the ratio of the probabilities at
any outcome is bounded by at most exp(ǫ). The definition clearly shows that differential
privacy is a uniform concept across all data distributions. In many machine learning ap-
plications, one often cares about a specific data distribution and raises privacy concerns
about the impact of deleting or adding a single or small number of data points to this
specific data distribution.

To address such questions, we propose here tangent differential privacy, a privacy con-
cept tailored to a specific data distribution. When applying the case of risk minimization
(such as supervised learning), we demonstrate that entropic regularization guarantees tan-
gent differential privacy under relatively general conditions.

Related work. The concepts of ǫ-differential privacy and (ǫ, δ)-differential privacy
were first proposed in [9, 10] and a wonderful resource for this vast literature is [11]. Sev-
eral efforts have been devoted to relax or reformulate differential privacy, with examples
including Renyi differential privacy [17], concentrated differential privacy [6,12], and Lip-
schitz privacy [15]. In a broader context, other related forms of privacy concepts have
also been developed, such as local differential privacy [8,13,14] and the recently proposed
metric privacy [4, 5]. The concept of tangent differential privacy proposed here is closely
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related to Lipschitz privacy, though the latter is defined as a uniform concept across all
data distributions.

Contents. The rest of the note is organized as follows. Section 2 introduces the concept
of tangent differential privacy. Section 3 considers the risk minimization problem and
proposes entropic regularization as a solution of tangent differential privacy for both total
variation and Wasserstein distances. Section 4 concludes with some discussions.

2 Tangent differential privacy

Let X be the metric space of the data points, and P(X) be the space of distributions over X.
Let W be the metric space of outputs, P(W) be the space of distributions over W, and
F(W) be the space of bounded functions over W. Here, the output space W can be quite
general, such as R

n, the space of regression functions, or the space of neural network
weights [1]. To discuss differential privacy, let A be a randomized algorithm that takes
p ∈ P(X) and produces a randomized output w. Because A is random, we can regard it
as a (typically nonlinear) map

A : P(X) → P(W),

taking p(x) to a distribution q(w). When q(w) has a bounded density, we can also consider
its logarithm

log ◦A : P(X) → F(W),

taking p(x) to a function (log q)(w).
Let us denote Tp and Tq as the tangent spaces of signed measures at p and q, respec-

tively. The tangent map of A at p is DAp : Tp → Tq. Suppose that p is the data distribution
of interest. For any p̃ close to p, the linear approximation suggests that

Ap̃ − Ap ≈ DAp · ( p̃ − p). (2.1)

In the usual setting, p can be an empirical distribution with N data samples {xi} and p̃ is
obtained by removing a distinguished sample xk

p(x) =
1

N

N

∑
i=1

δxi
(x), p̃(x) =

1

N − 1 ∑
i 6=k

δxi
(x).

This also extends naturally to the situation where p̃ is obtained from p by changing a small
number of data points.

Similarly, if Tlog q is the tangent space at log q, the tangent map of log ◦A at p is

D(log ◦A)p : Tp → Tlog q.

For any p̃ close to p, we have

log(Ap̃)− log(Ap) ≈ D(log ◦A)p · ( p̃ − p). (2.2)
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When P(X) and P(W) are endowed with distances, the distance functions induce cor-
responding norms on Tp, Tq, and Tlog q. For P(W), the most relevant distance function to
differential privacy is the total variation distance

dTV(q, q̃) = 2 · max
S⊂W

|q(S)− q̃(S)|.

Here, we introduce an additional factor of 2 to ensure consistency with the L1 norm. The
corresponding norm for Tq is the L1 norm ‖ǫ‖L1 :=

∫

W |ǫ(w)|dw and the one for Tlog q is

the L∞ norm ‖ǫ‖L∞ := supw∈W |ǫ(w)|. For P(X), there are two common choices for the
distance and the corresponding norm ‖ · ‖Tp at p.

Example 2.1. Consider the total variation distance on P(X), i.e.

dTV(p, p̃) = 2 · max
S⊂X

|p(S)− p̃(S)|.

This setup results in the L1 norm for Tp

‖ǫ‖L1 :=
∫

X
|ǫ(x)|dx.

Example 2.2. Consider the Wasserstein-2 distance on P(X) and still the total variation
distance on P(W). This results in the following weighted Sobolev norm for Tp [18]:

‖ǫ‖2
Ḣ−1(p)

:= min
f :∇·( f p)=ǫ

∫

X
| f (x)|2 p(x)dx, ǫ ∈ Tp.

With these preparations, we are ready to introduce the following definitions.

Definition 2.1. A is Lipschitz at p for the norm pair (‖ · ‖Tp , L1) with bound Cp if

‖DAp‖‖·‖Tp→L1 ≤ Cp. (2.3)

For p̃ with ‖ p̃ − p‖Tp small, using (2.1) and (2.3) leads to

‖Ap − Ap̃‖L1 ≤
(

Cp + o(1)
)

‖ p̃ − p‖Tp ,

i.e. for any set S ⊂ W,

|(Ap)(S)− (Ap̃)(S)| ≤
(

Cp + o(1)
)

‖ p̃ − p‖Tp . (2.4)

Definition 2.2. A is log-Lipschitz or satisfies tangent differential privacy at p for the norm pair
(‖ · ‖Tp , L∞) with bound Cp if

‖D(log ◦A)p‖‖·‖Tp→L∞ ≤ Cp. (2.5)

For p̃ with ‖ p̃ − p‖Tp small, using (2.2) and (2.5) leads to

‖ log(Ap)− log(Ap̃)‖L∞ =

∥

∥

∥

∥

log

(

Ap

Ap̃

)∥

∥

∥

∥

L∞

≤
(

Cp + o(1)
)

‖ p̃ − p‖Tp ,
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i.e. for any w ∈ W,

exp
(

−
(

Cp + o(1)
)

‖ p̃ − p‖Tp

)

≤
(Ap)(w)

(Ap̃)(w)
≤ exp

((

Cp + o(1)
)

‖ p̃ − p‖Tp

)

.

Therefore, for any set S ⊂ W,

exp
(

−
(

Cp + o(1)
)

‖ p̃ − p‖Tp

)

≤

∫

S
(Ap)(w)dw

∫

S
(Ap̃)(w)dw

≤ exp
((

Cp + o(1)
)

‖ p̃ − p‖Tp

)

. (2.6)

This is a more quantitative version of differential privacy adapted to the data distribu-
tion p.

Remark 2.1. (a) By working directly with the space of distributions P(X), the concept
of tangent differential privacy is defined without direct reference to the number of data
samples in the distribution. Therefore, it allows for changing either a single data sample
or a small fraction of samples.

(b) Working with different distances on P(X) leads to different types of privacy consid-
erations. For example, the total variation distance on P(X) corresponds to the Hamming
distance case of the ǫ-differential privacy. The Wasserstein distance case is related to the
metric privacy setup.

(c) One key property of the standard differential privacy is the postprocessing prop-
erty, i.e. any operation of the output w does not invalidate the differential privacy prop-
erty. Here, if A is Lipschitz or satisfies tangent differential privacy (i.e. log-Lipschitz), the
postprocessing property still holds. This can be seen from the fact that any postprocessing
does not change the L1 norm (2.4) and the L∞ norm (2.6).

(d) Another important feature of standard differential privacy is the composition prop-
erty. It is not difficult to demonstrate that this also holds here. Let A : P(X) → P(W)
and A′ : P(X) → P(W′) be Lipschitz with constant Cp and C′

p, respectively. The compo-

sition A × A′ : P(X) → P(W × W′) maps to the product measure, i.e. (A × A′)(p) =
(Ap)⊗ (A′p). Then, for p̃ close to p

‖(A × A′)(p)− (A × A′)( p̃)‖L1

= ‖(Ap)⊗ (A′p)− (Ap̃)⊗ (A′ p̃)‖L1

≤
(

Cp + C′
p + o(1)

)

‖p − p̃‖Tp

shows that A × A′ is also Lipschitz with constant Cp + C′
p.

Let A : P(X) → P(W) and A′ : P(X) → P(W′) be log-Lipschitz (i.e. satisfy tangent
differential privacy) with constant Cp and C′

p, respectively, then for p̃ close to p,

‖ log(A × A′)(p)− log(A × A′)( p̃)‖L∞

= ‖ log(Ap) + log(A′p)− log(Ap̃)− log(A′ p̃)‖L∞

≤
(

Cp + C′
p + o(1)

)

‖p − p̃‖Tp
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showing that A × A′ is also log-Lipschitz (i.e. satisfies tangent differential privacy) with
constant Cp + C′

p.

3 Risk minimization

We consider the case where the output in W is obtained via an optimization procedure,
such as empirical risk minimization. Given the data distribution p(x) and risk function
r(w, x) ≥ 0, the goal is

min
w

∫

r(w, x)p(x)dx.

The solution w of this minimization problem depends deterministically on p(x). To dis-
cuss differential privacy, one needs to consider a randomized algorithm with its output
distributed over W. Here, we propose to adopt entropic regularization following [16] and
seek q(w) ∈ P(W):

q = argmin
q∈P(W)

∫

q(w)

(

∫

r(w, x)p(x)dx

)

dw + β−1
∫

q(w) ln q(w)dw.

The solution is the Gibbs distribution

q(w) =
exp

(

− β

∫

r(w, x)p(x)dx
)

∫

W
exp

(

− β

∫

r(w′, x)p(x)dx
)

dw′
, (3.1)

simply written as q(w) ∝ exp(−β
∫

r(w, x)p(x)dx). Then, the map A : P(X) → P(W)
takes from p(x) to q(w).

Remark 3.1. The distribution (3.1) can, in principle, be sampled using Monte Carlo meth-
ods, such as Langevin dynamics. One popular differentially private algorithm is noisy-
SGD [2, 3], and there is a close connection between noisy-SGD and Langevin dynam-
ics [7, 19].

Fixing p(x), let us compute the differential DAp : Tp → Tq. Its kernel as a function of
(w, x) is given by

−β

∫

(

q(w)δ(w − w′)− q(w)q(w′)
)

r(w′, x)dw′.

When X and W are finite sets, this can be written in the matrix form as

−β
(

diag(q)− qq⊤
)

r,

where here r denotes a matrix with value r(w, x) at entry (w, x).
The differential of D(log ◦A)p : Tp → Tlog q can also be computed easily with the chain

rule. Its kernel as a function of (w, x) is

−β

∫

(

δ(w − w′)− q(w′)
)

r(w′, x)dw′.
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Again, when X and W are finite sets, the matrix form is −β(I − 1q⊤)r, where 1 stands
for the all-one column vector. Below, we show that the entropic regularization guarantees
tangent differential privacy under rather general conditions for both the TV distance and
the Wasserstein distance on P(X).

3.1 Total variation distance on P(X)

Recall from Example 2.1 that one has L1 norm for Tp, L1 norm for Tq, and L∞ norm
for Tlog q.

Theorem 3.1. If maxx

∫

W q(w)r(w, x)dw ≤ R, then A is differentiable at p for the norm pair

(L1, L1) with bound 2βR.

Proof. Pick any signed measure ǫ(x) ∈ Tp. Up to the −β factor, (DApǫ)(w) is equal to

q(w)
∫∫

(

δ(w − w′)− q(w′)
)

r(w′, x)ǫ(x)dxdw′

= q(w)
∫

r(w, x)ǫ(x)dx − q(w)
∫∫

q(w′)r(w′, x)ǫ(x)dxdw′.

Among the two terms, the TV norm of the first term is bounded by
∫

W

∣

∣

∣

∣

∫

X
q(w)r(w, x)ǫ(x)dx

∣

∣

∣

∣

dw ≤

(

max
x

∫

W
|q(w)r(w, x)|dw

)

· ‖ǫ‖L1 ≤ R‖ǫ‖L1,

where we use the non-negativity of q(w)r(w, x). The same estimate applies to the second
term as well. Putting together shows that ‖DAp‖L1→L1 ≤ 2βR.

Remark 3.2. (a) The product βR controls the sensitivity of A. One can achieve this by
adopting either a small R (a safer risk function) or a small β (stronger entropic regulariza-
tion).

(b) One way to ensure maxx

∫

W q(w)r(w, x)dw ≤ R is maxw,x |r(w, x)| ≤ R. But this
can be strict as it does not take into consideration the distributions p(x) and q(w).

(c) The quantity maxx

∫

W q(w)r(w, x)dw can be estimated. Suppose we have an algo-
rithm that can sample w from q(w). First, for each w, iterate over the data point x and
accumulate r(w, x) for each x. Second, for each data point x, dividing the accumulated
value by the number of w gives the estimate of

∫

W q(w)r(w, x)dw for x. Finally, taking the

maximum of these estimates over x gives the approximation to maxx

∫

W q(w)r(w, x)dw.

Theorem 3.2. If maxx,w |r(w, x)| ≤ R, then A satisfies tangent differential privacy at p for the
norm pair (L1, L∞) with bound 2βR.

Proof. Pick any ǫ ∈ Tp. Up to the −β factor, (D(log ◦A)pǫ)(w) at each w is
∫∫

(

δ(w − w′)− q(w′)
)

r(w′, x)ǫ(x)dxdw′

=
∫

r(w, x)ǫ(x)dx −
∫∫

q(w′)r(w′, x)ǫ(x)dxdw′.
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Among the two terms, the first one is bounded at w with
∣

∣

∣

∣

∫

r(w, x)ǫ(x)dx

∣

∣

∣

∣

≤ R‖ǫ‖L1 .

The second one can be bounded in the same way. Therefore,

‖D(log ◦A)p‖L1→L∞ ≤ 2βR.

The proof is complete.

Remark 3.3. Examples of bounded r(w, x) include the Savage loss, the tangent loss, and
the 0/1 loss. Using any of these losses automatically guarantees tangent differential pri-
vacy for the pair (L1, L∞).

3.2 Wasserstein distance on P(X)

Recall from Example 2.2 that we have the Ḣ−1(p) norm for Tp, L1 norm for Tq, and L∞

norm for Tlog q. Recall that the Ḣ−1(p) norm and its dual norm are given by

‖ǫ‖2
Ḣ−1(p)

= min
f :∇·( f p)=ǫ

∫

| f (x)|2 p(x)dx, ‖g‖2
Ḣ1(p)

=
∫

|∇g(x)|2 p(x)dx.

Theorem 3.3. If
∥

∥

∥

∥

∫

W
q(w)r(w, ·)dw

∥

∥

∥

∥

Ḣ1(p)

≤ R,

then A is differentiable at p for the norm pair (Ḣ−1(p), L1) with bound 2βR.

Proof. Pick any ǫ(x) ∈ Tp. Up to the −β factor, (DApǫ)(w) is equal to

q(w)
∫

r(w, x)ǫ(x)dx − q(w)
∫∫

q(w′)r(w′, x)ǫ(x)dxdw′.

The L1 norm of the first term can be bounded by
∫

W

∣

∣

∣

∣

∫

X
q(w)r(w, x)ǫ(x)dx

∣

∣

∣

∣

dw ≤

∥

∥

∥

∥

∫

|q(w)r(w, ·)|dw

∥

∥

∥

∥

Ḣ1(p)
‖ǫ‖Ḣ−1(p) ≤ R‖ǫ‖Ḣ−1(p),

where we use the non-negativity of q(w)r(w, ·). The same estimate can bound the second
term. Therefore, ‖DAp‖Ḣ−1(p)→L1 ≤ 2βR.

Remark 3.4. (a) One way to ensure
∥

∥

∥

∥

∫

W
q(w)r(w, ·)dw

∥

∥

∥

∥

Ḣ1(p)
≤ R

is
max

w
‖r(w, ·)‖Ḣ1(p) ≤ R.

However, this can be too strict as it does not take into consideration the distributions p(x)
and q(w).
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(b) The quantity

∥

∥

∥

∥

∫

W
q(w)r(w, ·)dw

∥

∥

∥

∥

Ḣ1(p)
=

(

∣

∣

∣

∣

∫

W
q(w)∇xr(w, x)dw

∣

∣

∣

∣

2

p(x)dx

)
1
2

can be estimated instead. Suppose that we have an algorithm that samples w∼q(w). First,
for each w, iterate over x and accumulate ∇xr(w, x) for each x. Second, for each x, divide
the accumulated value by the number of w to get an estimate of |

∫

W q(w)∇xr(w, x)dw|.

Its square is an estimate for |
∫

W q(w)∇xr(w, x)dw|2. Finally, averaging the squares over x

and taking the square root gives an approximation to ‖
∫

W q(w)r(w, ·)dw‖Ḣ1(p).

Theorem 3.4. If maxw ‖r(w, ·)‖Ḣ1(p) ≤ R, then A satisfies tangent differential privacy at p for

the norm pair (Ḣ−1(p), L∞) with bound 2βR.

Proof. Pick any ǫ ∈ Tp. Up to the −β factor, (D(log ◦A)pǫ)(w) at each w is
∫∫

(

δ(w − w′)− q(w′)
)

r(w′, x)ǫ(x)dxdw′

=
∫

r(w, x)ǫ(x)dx −
∫∫

q(w′)r(w′, x)ǫ(x)dxdw′.

The first term is bounded at w by
∫

r(w, x)ǫ(x)dx ≤ ‖r(w, ·)‖Ḣ1(p)‖ǫ‖Ḣ−1(p) ≤ R‖ǫ‖Ḣ−1(p).

The second term can be bounded in the same way. Therefore,

‖D(log ◦A)p‖Ḣ−1(p)→L∞ ≤ 2βR.

The proof is complete.

Remark 3.5. Note that if W is finite, then maxw ‖r(w, ·)‖Ḣ1(p) can be estimated by eval-

uating ‖r(w, ·)‖Ḣ1(p) for each w ∈ W. Otherwise, maxw,x |∇xr(w, x)| provides an upper

bound for maxw ‖r(w, ·)‖Ḣ1(p).

4 Discussion

In this note, we propose tangent differential privacy as a new form of differential pri-
vacy. Compared to the usual differential privacy, which is defined uniformly across data
distributions, tangent differential privacy is tailored to a specific data distribution of inter-
est. For empirical risk minimization of supervised learning, entropic regularization guar-
antees tangent differential privacy under rather general conditions on the risk function.
Some directions for future work include

• Extend the framework to unsupervised learning and online learning problems.

• Explore alternatives or approximations to (3.1) since sampling the Gibbs distribu-
tion q(w) can be challenging when it exhibits meta-stability.



J. Mach. Learn., 4(3):157-165 165

Acknowledgments

The author thanks Yiping Lu and the reviewers for constructive discussions.
This work is partially supported by the NSF (Grant Nos. DMS-2011699, DMS-2208163).

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, Deep learning
with differential privacy, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, ACM, 308–318, 2016.

[2] R. Bassily, V. Feldman, K. Talwar, and A. Guha Thakurta, Private stochastic convex optimization with
optimal rates, in: Advances in Neural Information Processing Systems, Curran Associates, Inc., 32:11250–
11259, 2019.

[3] R. Bassily, A. Smith, and A. Thakurta, Private empirical risk minimization: Efficient algorithms and tight
error bounds, in: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, IEEE, 464–473,
2014.

[4] M. Boedihardjo, T. Strohmer, and R. Vershynin, Metric geometry of the privacy-utility tradeoff,
arXiv:2405.00329, 2024.

[5] M. Boedihardjo, T. Strohmer, and R. Vershynin, Private measures, random walks, and synthetic data,
Probab. Theory Relat. Fields, 189(1-2):569–611, 2024.

[6] M. Bun and T. Steinke, Concentrated differential privacy: Simplifications, extensions, and lower bounds,
in: Lecture Notes in Computer Science, Vol. 9985, Springer, 635–658, 2016.

[7] X. Cheng, D. Yin, P. Bartlett, and M. Jordan, Stochastic gradient and Langevin processes, in: Proceedings
of the 37th International Conference on Machine Learning, JMLR.org, 1810–1819, 2020.

[8] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, Local privacy and statistical minimax rates, in: 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, IEEE, 429–438, 2013.

[9] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, Our data, ourselves: Privacy via dis-
tributed noise generation, in: Advances in Cryptology – EUROCRYPT 2006. Lecture Notes in Computer
Science, Vol. 4004, Springer, 486–503, 2006.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith, Calibrating noise to sensitivity in private data analysis,
in: Theory of Cryptography. TCC 2006. Lecture Notes in Computer Science, Vol. 3876, Springer, 265–284, 2006.

[11] C. Dwork and A. Roth, The algorithmic foundations of differential privacy, Found. Trends Theor. Comput.
Sci., 9(3-4):211–407, 2014.

[12] C. Dwork and G. N. Rothblum, Concentrated differential privacy, arXiv:1603.01887, 2016.
[13] A. Evfimievski, J. Gehrke, and R. Srikant, Limiting privacy breaches in privacy preserving data mining,

in: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ACM, 211–222, 2003.

[14] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, What can we learn pri-
vately?, SIAM J. Comput., 40(3):793–826, 2011.

[15] F. Koufogiannis, S. Han, and G. J. Pappas, Optimality of the Laplace mechanism in differential privacy,
arXiv:1504.00065, 2015.

[16] F. McSherry and K. Talwar, Mechanism design via differential privacy, in: 48th Annual IEEE Symposium
on Foundations of Computer Science, IEEE, 94–103, 2007.
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