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Abstract. We introduce a deep learning-based framework for weakly enforcing boundary conditions in the
numerical approximation of partial differential equations. Building on existing physics-informed neural net-
work and deep Ritz methods, we propose the Deep Uzawa algorithm, which incorporates Lagrange mul-
tipliers to handle boundary conditions effectively. This modification requires only a minor computational
adjustment but ensures enhanced convergence properties and provably accurate enforcement of boundary
conditions, even for singularly perturbed problems. We provide a comprehensive mathematical analysis
demonstrating the convergence of the scheme and validate the effectiveness of the Deep Uzawa algorithm
through numerical experiments, including high dimensional, singularly perturbed problems and those posed
over non-convex domains.
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1 Introduction

The numerical approximation of partial differential equations (PDEs) using artificial neu-
ral networks (ANNSs) has gained significant attention in recent years [4,9[14]18,20]. This
surge is largely attributed to the success of deep learning in various complex tasks [10,13].
In the context of solving PDEs, neural network-based methods such as the deep Ritz ap-
proach [4], which approximates solutions by minimising the Dirichlet energy, and the
physics-informed neural networks (PINNs) [18], which minimise the L?-norm of the resid-
uals are prominent examples.

Despite their success, a challenge in these methods lies in the enforcement of bound-
ary conditions. While classical numerical methods also face difficulties in this regard, the
non-standard nature of neural network approximation spaces makes this issue particu-
larly pronounced. Standard penalty approaches often require large penalty weights to en-
force boundary conditions accurately, resulting in ill-conditioned optimisation problems
that are difficult to tune and can lead to suboptimal solutions. This issue is particularly
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severe in problems involving singular perturbations or complex domains. Additionally,
the practical implementation of boundary conditions in ANN-based methods poses chal-
lenges, as accurately capturing boundary data within the neural network’s architecture
often proves difficult.

To address these challenges, we propose extending the Lagrange multiplier framework
from finite elements, as introduced by Babuska [1], to neural network-based PDE solvers.
Our work develops a class of algorithms termed Deep Uzawa algorithms, which itera-
tively solve the resulting saddle point problems to weakly impose boundary conditions.
The key innovation lies in adapting Uzawa'’s algorithm [22] to this context, allowing for
efficient iterative approximation of PDEs where boundary conditions are enforced using
an augmented Lagrangian formulation. This approach ensures that the algorithmic frame-
work remains stable and accurate due to the coercivity of the energies involved.

The Deep Uzawa methods, Ritz-Uzawa (RitUz) and PINNs-Uzawa (PINNUZz), extend
existing deep Ritz and PINN frameworks with minimal modifications, making them high-
ly practical for integration into current computational workflows. The theoretical analysis
provided includes convergence proofs that demonstrate the iterative schemes’ stability at
the PDE level. These theoretical guarantees offer a robust foundation for the implementa-
tion of the Deep Uzawa algorithms and provide insight into their convergence behaviour.
We compare the behaviour of these approaches to the vanilla methods and show that the
Deep Uzawa approach achieves comparable or superior performance without relying on
tuning penalty parameters.

Numerous methods have been explored for weakly imposing boundary conditions
within ANN-based PDE solvers. The deep Ritz method [4] and PINNSs [18] form the foun-
dational basis for many current approaches, but both rely on penalty terms for boundary
enforcement, which can make optimisation challenging, particularly when large penalties
are needed. To address these shortcomings, [14] proposed an adaptation using Nitsche’s
method [17] from finite element analysis to weakly impose boundary conditions, mitigat-
ing conformity issues highlighted in [4]. Similarly, [23] compared traditional Ritz-Galerkin
methods with ANN-based approaches, noting the implicit regularisation properties pro-
vided by neural networks. Other advancements, such as the penalty-free neural network
strategy in [19], have targeted second-order boundary value problems in complex geome-
tries. In high-dimensional settings, explored deep learning approaches for elliptic
PDEs with non-trivial boundary conditions, showcasing the flexibility of neural networks
in handling such cases.

Our Deep Uzawa method builds on these developments by leveraging a consistent
saddle point framework to address the boundary enforcement problem, offering a minor
tweak computationally that provably enhances stability and accuracy. The application of
Uzawa-type iterations in neural network contexts, as presented in [16], serves as a founda-
tion for our iterative scheme. Our approach provides a structured way to balance the com-
peting objectives of PDE accuracy and boundary condition enforcement, demonstrating
improved stability in various numerical experiments, including problems on non-convex
domains and high-dimensional geometries.

The rest of the paper is organized as follows: In Section P} we introduce the nota-
tion and fundamental concepts related to Sobolev spaces, which form the basis for the
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