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Abstract. We introduce a deep learning-based framework for weakly enforcing boundary conditions in the
numerical approximation of partial differential equations. Building on existing physics-informed neural net-
work and deep Ritz methods, we propose the Deep Uzawa algorithm, which incorporates Lagrange mul-
tipliers to handle boundary conditions effectively. This modification requires only a minor computational
adjustment but ensures enhanced convergence properties and provably accurate enforcement of boundary
conditions, even for singularly perturbed problems. We provide a comprehensive mathematical analysis
demonstrating the convergence of the scheme and validate the effectiveness of the Deep Uzawa algorithm
through numerical experiments, including high dimensional, singularly perturbed problems and those posed
over non-convex domains.
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1 Introduction

The numerical approximation of partial differential equations (PDEs) using artificial neu-
ral networks (ANNs) has gained significant attention in recent years [4, 9, 14, 18, 20]. This
surge is largely attributed to the success of deep learning in various complex tasks [10,13].
In the context of solving PDEs, neural network-based methods such as the deep Ritz ap-
proach [4], which approximates solutions by minimising the Dirichlet energy, and the
physics-informed neural networks (PINNs) [18], which minimise the L2-norm of the resid-
uals are prominent examples.

Despite their success, a challenge in these methods lies in the enforcement of bound-
ary conditions. While classical numerical methods also face difficulties in this regard, the
non-standard nature of neural network approximation spaces makes this issue particu-
larly pronounced. Standard penalty approaches often require large penalty weights to en-
force boundary conditions accurately, resulting in ill-conditioned optimisation problems
that are difficult to tune and can lead to suboptimal solutions. This issue is particularly

*C.G.Makridakis@iacm.forth.gr
†A.R.Pim@bath.ac.uk
‡Corresponding author. tmp38@bath.ac.uk

https://www.global-sci.com/jml Global Science Press



J. Mach. Learn., 4(3):166-191 167

severe in problems involving singular perturbations or complex domains. Additionally,
the practical implementation of boundary conditions in ANN-based methods poses chal-
lenges, as accurately capturing boundary data within the neural network’s architecture
often proves difficult.

To address these challenges, we propose extending the Lagrange multiplier framework
from finite elements, as introduced by Babuška [1], to neural network-based PDE solvers.
Our work develops a class of algorithms termed Deep Uzawa algorithms, which itera-
tively solve the resulting saddle point problems to weakly impose boundary conditions.
The key innovation lies in adapting Uzawa’s algorithm [22] to this context, allowing for
efficient iterative approximation of PDEs where boundary conditions are enforced using
an augmented Lagrangian formulation. This approach ensures that the algorithmic frame-
work remains stable and accurate due to the coercivity of the energies involved.

The Deep Uzawa methods, Ritz-Uzawa (RitUz) and PINNs-Uzawa (PINNUz), extend
existing deep Ritz and PINN frameworks with minimal modifications, making them high-
ly practical for integration into current computational workflows. The theoretical analysis
provided includes convergence proofs that demonstrate the iterative schemes’ stability at
the PDE level. These theoretical guarantees offer a robust foundation for the implementa-
tion of the Deep Uzawa algorithms and provide insight into their convergence behaviour.
We compare the behaviour of these approaches to the vanilla methods and show that the
Deep Uzawa approach achieves comparable or superior performance without relying on
tuning penalty parameters.

Numerous methods have been explored for weakly imposing boundary conditions
within ANN-based PDE solvers. The deep Ritz method [4] and PINNs [18] form the foun-
dational basis for many current approaches, but both rely on penalty terms for boundary
enforcement, which can make optimisation challenging, particularly when large penalties
are needed. To address these shortcomings, [14] proposed an adaptation using Nitsche’s
method [17] from finite element analysis to weakly impose boundary conditions, mitigat-
ing conformity issues highlighted in [4]. Similarly, [23] compared traditional Ritz-Galerkin
methods with ANN-based approaches, noting the implicit regularisation properties pro-
vided by neural networks. Other advancements, such as the penalty-free neural network
strategy in [19], have targeted second-order boundary value problems in complex geome-
tries. In high-dimensional settings, [11] explored deep learning approaches for elliptic
PDEs with non-trivial boundary conditions, showcasing the flexibility of neural networks
in handling such cases.

Our Deep Uzawa method builds on these developments by leveraging a consistent
saddle point framework to address the boundary enforcement problem, offering a minor
tweak computationally that provably enhances stability and accuracy. The application of
Uzawa-type iterations in neural network contexts, as presented in [16], serves as a founda-
tion for our iterative scheme. Our approach provides a structured way to balance the com-
peting objectives of PDE accuracy and boundary condition enforcement, demonstrating
improved stability in various numerical experiments, including problems on non-convex
domains and high-dimensional geometries.

The rest of the paper is organized as follows: In Section 2, we introduce the nota-
tion and fundamental concepts related to Sobolev spaces, which form the basis for the



J. Mach. Learn., 4(3):166-191 168

functional framework of our analysis. Section 3 presents the development of a Deep Ritz-
Uzawa method, including a proof of convergence in suitable Sobolev spaces. In Section 4,
we extend this approach to the PINNs-Uzawa scheme, demonstrating convergence within
an appropriate space for least-squares minimisation. The construction of neural network
approximations and their integration within the Deep Uzawa framework are discussed in
Section 5. Numerical results showcasing the effectiveness of our methods for boundary
layer problems, those in complex geometries and high dimension are provided in Sec-
tion 6.

2 Notation and problem setup

We will use a standard notation for Sobolev spaces [6]. For Ω ⊆ R
d, we denote by ‖·‖Lp(Ω)

the L2(Ω)-norm with associated inner product 〈·, ·〉L2(Ω). For s ≥ 0, p ∈ (1, ∞), we denote

by ‖ · ‖Hp(Ω) (| · |Hp(Ω)) the norm (semi-norm) in the Hilbert space Hp(Ω). We will now
provide a short summary of fractional and negative Sobolev spaces and their associated
norms and inner products.

2.1 Fractional and negative Sobolev spaces

For m ∈ N, we define the fractional Sobolev space Hm−1/2(∂Ω) as the set of traces of
functions in Hm(Ω),

Hm− 1
2 (∂Ω) := {g : ∂Ω→ R : u = g a.e. on ∂Ω, ∀ u ∈ Hm(Ω)}. (2.1)

In general, fractional Sobolev spaces are defined for all exponents and powers in terms
of Gagliardo semi-norms. However, for the purposes of this paper, the above definition
is sufficient as we consider the case when m = 1, 2, which are particularly relevant for
analysis of the methods discussed.

For s > 0, the negative Sobolev space H−s(∂Ω) is defined as the dual of the space
Hs(∂Ω) and has an associated norm given by

‖G‖H−s(∂Ω) := sup
v∈Hs(∂Ω)

〈G | v〉H−s(∂Ω)×Hs(∂Ω)

‖v‖Hs(∂Ω)
, (2.2)

where 〈G | v〉H−s(∂Ω)×Hs(∂Ω) represents the duality pairing, i.e. the action of the linear
functional G applied to the function v.

To facilitate later analysis, we recall the following trace theorem, which will be used to
relate functions defined on Ω to their behaviour on ∂Ω.

Theorem 2.1 ([7, Theorem 1]). Let s > 1/2. Then, for v ∈ Hs(Ω), there exists a constant
Ctr > 0 such that

‖v‖L2(∂Ω) ≤ Ctr‖v‖Hs(Ω). (2.3)
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Remark 2.1 (Computability of Ctr). The trace constant Ctr can, in many cases, be estimated,
particularly for standard geometries such as cubes and spheres [3]. For a domain Ω that is
star-shaped with respect to a point x0 ∈ Ω and satisfies (x− x0) · n(x) > 0 for all x ∈ ∂Ω.
Then we have that the following inequality holds:

Ctr ≤
1

2 minx∈∂Ω(x− x0) · n(x)

(

d +
√

d2 + 4 max
x∈∂Ω

|x− x0|2
)

. (2.4)

3 Dirichlet energy minimisation

In this section, we introduce the model problem and provide some background on the
Lagrange multiplier method, highlighting its connection to the Uzawa algorithm when
the Dirichlet energy defines the loss function as in Ritz-based neural network methods.

To that end, we consider a self-adjoint elliptic problem with a strictly positive definite

matrix A ∈ Rd×d, f ∈ L2(Ω), and g ∈ H1/2(∂Ω). To set up the problem, we define the
function space

H1
g(Ω) :=

{

φ ∈ H1(Ω) : φ|∂Ω = g
}

. (3.1)

We then seek a solution u ∈ H1
g(Ω) such that

L u := −div (A∇u) + u = f in Ω, (3.2)

in the weak sense, that is u satisfies

〈A∇u,∇v〉L2(Ω) + 〈u, v〉L2(Ω) = 〈 f , v〉L2(Ω), ∀ v ∈ H1
0(Ω). (3.3)

We observe that Eq. (3.2) is the Euler-Lagrange equation corresponding to the minimi-
sation of the convex quadratic Dirichlet functional

JD(u) :=
1

2

∥

∥A
1
2∇u

∥

∥

2

L2(Ω)
+

1

2
‖u‖2

L2(Ω) − 〈 f , u〉L2(Ω). (3.4)

Furthermore, the weak solution to (3.3) also minimises the Dirichlet energy, that is

u = arg min
φ∈H1

g(Ω)

JD(φ). (3.5)

This variational formulation serves as the foundation for deep Ritz neural network meth-
ods, where neural networks are utilised to approximate the minimiser of JD(u).

3.1 Penalty methods

In practice, it is often beneficial to pose the minimisation problem over a larger space, such
as H1(Ω), and enforce the boundary condition as a constraint within the formulation. This
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can be accomplished by extending the definition of JD : H1(Ω)→ R through the addition
of a penalty term

JD(u) :=
1

2

∥

∥A
1
2∇u

∥

∥

2

L2(Ω)
+

1

2
‖u‖2

L2(Ω) − 〈 f , u〉L2(Ω) +
γ

2
‖u− g‖2

X (3.6)

for some γ ≥ 0 and an appropriate normed space X. A natural choice from an analytic

point of view for X is H1/2(∂Ω).

Remark 3.1 (Finite Element Approaches). In the context of finite element methods, the
penalty term is often formulated using a mesh-weighted L2 norm. Let h denote the finite
element discretisation parameter then one can consider

JD,h(uh) :=
1

2

∥

∥A
1
2∇uh

∥

∥

2

L2(Ω)
+

1

2
‖uh‖2

L2(Ω) − 〈 f , uh〉L2(Ω) +
γ

h
‖uh − g‖2

L2(∂Ω). (3.7)

It can then be shown that, by choosing γ sufficiently large, we have

lim
h→0
‖u− uh‖H1(Ω) = 0. (3.8)

This argument relies on applying an inverse estimate, however, such estimates are not
available in the context of neural network approximations.

Definition 3.1 (Dirichlet Loss Functional). To maintain compatibility with neural network-
based methodologies, we use X = L2(∂Ω)-penalty term, i.e.

JD(u) :=
1

2

∥

∥A
1
2∇u

∥

∥

2

L2(Ω)
+

1

2
‖u‖2

L2(Ω) − 〈 f , u〉L2(Ω) +
γ

2
‖u− g‖2

L2(∂Ω). (3.9)

Remark 3.2 (Limitations of Penalty Only Approaches). In neural network approaches, the
penalty term in (3.9) is often insufficient to guarantee the solution well approximates both
the PDE and the boundary condition. This is as the resulting Euler-Lagrange equations
corresponding to (3.9) are

L u− f = 0 in Ω,

n ·A∇u + γ (u− g) = 0 on ∂Ω.
(3.10)

Thus, the minimiser of JD satisfies a Robin boundary condition with parameter γ, rather
than a true Dirichlet boundary condition. This observation motivates the exploration of
alternative methods, such as those involving Lagrange multipliers [1].

The first core idea of our approach is the introduction of the Lagrangian.

Definition 3.2 (Dirichlet Energy Lagrangian). For a given g ∈ H1/2(∂Ω) and f ∈ L2(Ω), let

the Lagrangian LD : H1(Ω)×H−1/2(∂Ω)→ R be given by

LD(u, λ) := JD(u)− 〈λ | u − g〉H−1/2(∂Ω)×H1/2(∂Ω). (3.11)

This Lagrangian formulation allows us to incorporate the boundary condition u = g weakly by
introducing a Lagrange multiplier λ.
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We then seek the saddle points of the Lagrangian LD, that satisfy (u∗, λ∗) ∈ H1(Ω)×
H−1/2(∂Ω) such that

(u∗, λ∗) = arg min
u∈H1(Ω)

arg max
λ∈H−1/2(∂Ω)

LD(u, λ). (3.12)

This problem leads to the Euler-Lagrange equations

L u∗ − f = 0 in Ω,

u∗ − g = 0 on ∂Ω,

−λ∗ + n ·A∇u∗ = 0 on ∂Ω.

(3.13)

To solve the saddle point problem (3.12), we propose an iterative method through an Uza-
wa algorithm at the continuum level.

Definition 3.3 (Dirichlet Energy Update Scheme). For a given initial guess λ0 ∈ H−1/2(∂Ω)
and a step size ρ > 0, we define the sequence of functions {λk}∞

k=0 ⊂ H−1/2(∂Ω) and {uk}∞
k=0 ⊂

H1(Ω) by the following iterative scheme:

uk = arg min
u∈H1(Ω)

LD(u, λk), (3.14a)

〈λk+1 − λk | φ〉H−1/2(∂Ω)×H1/2(∂Ω) = −ρ〈uk − g, φ〉L2(∂Ω), ∀ φ ∈ H
1
2 (∂Ω). (3.14b)

Remark 3.3 (Simplifications in the Neural Network Framework). Our algorithm relies
on approximating the Uzawa iterates (3.14) within an appropriate neural network frame-
work. Due to the inherent smoothness of neural network functions, their traces belong to

L2(∂Ω). Similarly, the discrete Lagrange multipliers λk
ℓ

are also functions in L2(∂Ω). As

a result, duality pairings simplify to basic L2(∂Ω) integrals

〈λℓ | uℓ − g〉H−1/2(∂Ω)×H1/2(∂Ω) =
∫

∂Ω
(uℓ − g) λℓ ds. (3.15)

Additionally, updating the Lagrange multiplier in the Eq. (3.14b) simplifies to a straight-
forward function evaluation on ∂Ω. For more details, see Section 5.3. These observations
result in a particularly simple and efficient implementation.

Theorem 3.1. Let the sequences {uk} and {λk} denote the Uzawa iterates given in Definition 3.3,
and (u∗, λ∗) denote the saddle point of (3.12). Let Ctr > 0 is the trace constant associated with Ω

and assume that A is a strictly positive definite matrix with the smallest eigenvalue σmin > 0.
Suppose further that the parameters γ ≥ 0 and ρ > 0 satisfy

ρ− 2γ <
2 min{σmin, 1}

C2
tr

. (3.16)

Then we have
uk → u∗ in H1(Ω) as k → ∞. (3.17)
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Remark 3.4 (Convergence Regimes). There are two regimes in which the inequality in
Eq. (3.16) holds. The first is when γ is large relative to ρ, corresponding to 2γ ≥ ρ. In
this regime, the inequality is trivially satisfied, and the bound does not depend on the
matrix A. The second is when γ is small relative to ρ, including the case when γ = 0,
corresponding to 2γ < ρ. Here, the Uzawa update step-size ρ must be sufficiently small.
These regimes illustrate how the balance between γ and ρ impacts convergence.

To prove Theorem 3.1, we will prove or state a series of definitions and technical lem-
mata that will be used in the proof. To begin, we recall the classical Riesz representation
theorem and some of its consequences, which play a important role in the convergence
analysis.

Theorem 3.2 (Riesz Representation). For every s ∈ N and z ∈ H−s/2(∂Ω), there exists

a unique element Rs[z] ∈ Hs/2(∂Ω), known as the Riesz representor of z such that for all φ ∈
Hs/2(∂Ω), the following holds:

〈Rs[z], φ〉Hs/2(∂Ω) := 〈z | φ〉H−s/2(∂Ω)×Hs/2(∂Ω), ∀ φ ∈ H
s
2 (∂Ω). (3.18)

Moreover, the mapping Rs : H−s/2(∂Ω) → Hs/2(∂Ω) is an isometric isomorphism, i.e. it pre-
serves the norm structure

‖Rs[z]‖Hs/2(∂Ω) = ‖z‖H−s/2(∂Ω). (3.19)

Furthermore, as a consequence of this definition, for any z ∈ H−s/2(∂Ω), we have

‖Rs[z]‖2
Hs/2(∂Ω)

= 〈z | Rs[z]〉H−s/2(∂Ω)×Hs/2(∂Ω). (3.20)

To prove Theorem 3.1, we first establish the following lemma, which provides bounds

on the Uzawa iterates uk and λk in relation to the saddle points u∗ and λ∗.

Lemma 3.1 (Bounds on the Dirichlet Lagrangian). Let the sequences {uk}, {λk} denote the
Uzawa iterates given in Definition 3.3 and u∗, λ∗ denote the saddle points of LD (3.12). Then we
have

∥

∥ A
1
2∇(uk − u∗)

∥

∥

2

L2(Ω)
+ ‖uk − u∗‖2

L2(Ω) + γ‖uk − u∗‖2
L2(∂Ω)

= 〈λk − λ∗ | uk − u∗〉H−1/2(∂Ω)×H1/2(∂Ω). (3.21)

Proof. Since u∗ and λ∗ are the saddle points of the Lagrangian LD and λk, uk satisfy Defi-
nition 3.3, we infer the first-order optimality conditions

〈A∇u∗,∇φ〉L2(Ω) + 〈u∗, φ〉L2(Ω) − 〈 f , φ〉L2(Ω)

+ γ〈u∗ − g, φ〉L2(∂Ω) − 〈λ∗ | φ〉H−1/2(∂Ω)×H1/2(∂Ω) = 0,

〈A∇uk,∇φ〉L2(Ω) + 〈uk, φ〉L2(Ω) − 〈 f , φ〉L2(Ω)

+ γ〈uk − g, φ〉L2(∂Ω) − 〈λk | φ〉H−1/2(∂Ω)×H1/2(∂Ω) = 0

(3.22)

for all φ ∈ H1(Ω).
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Taking the difference of the above expressions and setting φ = uk − u∗ gives the fol-
lowing error equation:

∥

∥A
1
2∇(uk − u∗)

∥

∥

2

L2(Ω)
+ ‖uk − u∗‖2

L2(Ω) + γ‖uk − u∗‖2
L2(∂Ω)

= 〈λk − λ∗ | uk − u∗〉H−1/2(∂Ω)×H1/2(∂Ω), (3.23)

concluding the proof.

Lemma 3.2. Let {uk}, {λk} be given by (3.14), and u∗, λ∗ denote the saddle points of (3.12).
Then

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

= ‖λk − λ∗‖2
H−1/2(∂Ω)

+ ρ2‖uk − u∗‖2
L2(∂Ω)

− 2ρ〈λk − λ∗ | uk − u∗〉H−1/2(∂Ω)×H1/2(∂Ω). (3.24)

Proof. We begin by recalling the first-order optimality conditions for the saddle points and
iterates of LD. By these conditions, we have

〈λ∗ |ψ〉H−1/2(∂Ω)×H1/2(∂Ω)

= 〈λ∗ |ψ〉H−1/2(∂Ω)×H1/2(∂Ω)

− ρ〈u∗ − g, ψ〉L2(∂Ω), ∀ψ ∈ H
1
2 (∂Ω). (3.25)

Taking the difference between Eq. (3.25) and the update condition in (3.14), we obtain

〈λk+1 − λ∗ |ψ〉H−1/2(∂Ω)×H1/2(∂Ω)

= 〈λk − λ∗ |ψ〉H−1/2(∂Ω)×H1/2(∂Ω)

− ρ〈uk − u∗, ψ〉L2(∂Ω), ∀ψ ∈ H
1
2 (∂Ω). (3.26)

Now, let ψ = R1[λ
k+1 − λ∗]. Since R1 is an isometric isomorphism, we have

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

=
〈

λk − λ∗ | R1[λ
k+1 − λ∗]

〉

H−1/2(∂Ω)×H1/2(∂Ω)

− ρ
〈

uk − u∗, R1[λ
k+1 − λ∗]

〉

L2(∂Ω)
. (3.27)

The duality pairing is symmetric with respect to the Riesz representor

〈w | R1[z]〉H−1/2(∂Ω)×H1/2(∂Ω)

= 〈z | R1[w]〉H−1/2(∂Ω)×H1/2(∂Ω), ∀w, z ∈ H−
1
2 (∂Ω). (3.28)
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Taking ψ = R1[λ
k − λ∗] in Eq. (3.26) and substituting into (3.27) gives

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

= ‖λk − λ∗‖2
H1/2(∂Ω)

− ρ
〈

uk − u∗, R1[λ
k − λ∗]

〉

L2(∂Ω)

− ρ
〈

uk − u∗, R1[λ
k+1 − λ∗]

〉

L2(∂Ω)
. (3.29)

Finally, taking ψ = uk − u∗ in Eq. (3.26) and substituting into (3.29), we have

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

= ‖λk − λ∗‖2
H1/2(∂Ω)

− 2ρ
〈

uk − u∗, R1[λ
k − λ∗]

〉

L2(∂Ω)

+ ρ2‖uk − u∗‖2
L2(∂Ω), (3.30)

completing the proof.

3.2 Proof of Theorem 3.1

Proof. Let ek := uk − u∗ and β := 2γ− ρ. By applying Lemma 3.1 to Lemma 3.2, we obtain

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

= ‖λk − λ∗‖2
H−1/2(∂Ω)

− 2ρ
∥

∥A
1
2∇ek

∥

∥

2

L2(Ω)

− 2ρ‖ek‖2
L2(Ω)− ρβ‖ek‖2

L2(∂Ω). (3.31)

Without loss of generality, we assume ek 6= 0.

Case 1. β ≥ 0 (Non-Negative Penalty Term). If β ≥ 0, then

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

≤ ‖λk − λ∗‖2
H−1/2(∂Ω)

− 2ρ
∥

∥A
1
2∇ek

∥

∥

2

L2(Ω)
− 2ρ‖ek‖2

L2(Ω)

≤ ‖λk − λ∗‖2
H−1/2(∂Ω)

− 2ρ min{σmin, 1}‖ek‖2
H1(Ω). (3.32)

Assuming ρ > 0 and using the positivity of ~A, we conclude that ‖λk − λ∗‖H−1/2(∂Ω) is

a strictly decreasing sequence. Thus,

0 ≤ lim
k→∞
‖ek‖2

H1(Ω) ≤ lim
k→∞

‖λk − λ∗‖2
H−1/2(∂Ω)

− ‖λk+1 − λ∗‖2
H−1/2(∂Ω)

2ρ min{σmin, 1} = 0. (3.33)

Case 2. β < 0 (Negative Penalty Term). If β < 0, then by Theorem 2.1
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‖λk+1 − λ∗‖2
H−1/2(∂Ω)

= ‖λk − λ∗‖2
H−1/2(∂Ω)

− 2ρ
∥

∥A
1
2∇ek

∥

∥

2

L2(Ω)

− 2ρ‖ek‖2
L2(Ω) + ρ|β|‖ek‖2

L2(∂Ω)

≤ ‖λk − λ∗‖2
H−1/2(∂Ω)

− 2ρ‖A 1
2∇ek‖2

L2(Ω)

− 2ρ‖ek‖2
L2(Ω) + ρ|β|C2

tr‖ek‖2
H1(Ω). (3.34)

Given that A is positive definite with the smallest eigenvalue σmin > 0, we obtain

‖λk+1 − λ∗‖2
H−1/2(∂Ω)

≤ ‖λk − λ∗‖2
H−1/2(∂Ω)

− 2ρσmin‖∇ek‖2
L2(Ω)

− 2ρ‖ek‖2
L2(Ω) + ρ|β|C2

tr‖ek‖2
H1(Ω)

≤ ‖λk − λ∗‖2
H−1/2(∂Ω)

− α‖ek‖2
H1(Ω),

α := ρ
(

2 min{σmin, 1} − |β|C2
tr

)

.

(3.35)

By Eq. (3.16), ‖λk − λ∗‖H−1/2(∂Ω) is a strictly decreasing sequence. Hence,

lim
k→∞
‖ek‖2

H1(Ω) ≤
1

α
lim
k→∞
‖λk − λ∗‖2

H−1/2(∂Ω)
− ‖λk+1 − λ∗‖2

H−1/2(∂Ω)
→ 0, (3.36)

completing the proof of Theorem 3.1.

4 Least squares minimisation

In the previous section, we developed an iterative scheme based on the Euler-Lagrange
equation of the cost functional JD . However, it is important to note that JD is not the only
choice of cost functional. An alternative approach is to consider a least squares minimi-
sation of the residual of the PDE. This method forms the foundation of many physics-
informed neural network algorithms.

Let us assume Ω is a convex domain and consider a more regular boundary function

g ∈ H3/2(∂Ω), defining the cost functional

JR(u) :=
1

2
‖L u− f‖2

L2(Ω) (4.1)

over the constrained space

H2
g(Ω) :=

{

u ∈ H2(Ω) : u|∂Ω = g
}

. (4.2)

This space ensures that the solution adheres to the boundary conditions and is suitable for
PINN implementations. However, similar to the Dirichlet energy minimisation approach
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often it is practical to extend the functional to include a penalty term for γ ≥ 0,

JR(u) :=
1

2
‖L u− f‖2

L2(Ω) +
γ

2
‖u− g‖2

L2(∂Ω). (4.3)

A drawback of this approach is that the boundary penalty ‖u− g‖2
L2(Ω)

is weak, making

the resulting loss JR(u) unbalanced. Consequently, boundary errors often dominate PINN
algorithm inaccuracies, especially in singularly perturbed problems. To address this, we
consider the critical points of an equivalent functional over H2(Ω).

Remark 4.1 (Non-Convex Domains). The analysis presented here assumes Ω is convex to
leverage full elliptic regularity of the critical points. Extending this analysis to non-convex
domains introduces geometric singularities, which can be addressed by considering the
space

HL
g (Ω) :=

{

u ∈ H1
g(Ω) : L u ∈ L2(Ω)

}

. (4.4)

However, to avoid excessive notation and complexity, we do not present this analysis
here. For illustration, we demonstrate the method applied to a non-convex domain in
Section 6.2.

Definition 4.1 (PINNs Energy Lagrangian). For a given g ∈ H3/2(∂Ω) and f ∈ L2(Ω), let

the Lagrangian LR : H2(Ω)×H−3/2(∂Ω) → R be defined by

LR(u, λ) := JR(u)− 〈λ | u − g〉H−3/2(∂Ω)×H3/2(∂Ω). (4.5)

We seek the saddle points of the Lagrangian LR, denoted by (u∗, λ∗) ∈ H2(Ω) ×
H−3/2(∂Ω) such that

(u∗, λ∗) = arg min
u∈H2(Ω)

arg max
λ∈H−3/2(∂Ω)

LR(u, λ). (4.6)

This can be achieved through an Uzawa iteration scheme.

Definition 4.2 (PINNs Energy Update Scheme). For a given initial guess λ0 ∈ H−3/2(∂Ω),
a step size ρ > 0 and a penalty parameter γ > 0, we define the sequences {λk}∞

k=1 ⊂ H−3/2(∂Ω)

and {uk}∞
k=1 ⊂ H2(Ω) by the following iterative scheme:

uk = arg min
u∈H2(Ω)

LR(u, λk), (4.7a)

〈λk+1 − λk |ψ〉H−3/2(∂Ω)×H3/2(∂Ω) = −ρ〈uk − g, ψ〉L2(∂Ω), ∀ψ ∈ H
3
2 (∂Ω). (4.7b)

As in the case of the Dirichlet energy approach, our algorithm relies on approximat-
ing (4.7) within an appropriate neural network framework. Due to the inherent smooth-
ness of neural network functions, the duality pairings again simplify to L2(∂Ω) integrals

〈λℓ | uℓ − g〉H−3/2(∂Ω)×H3/2(∂Ω) =
∫

∂Ω
(uℓ − g) λℓ dS. (4.8)
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Furthermore, updating the Lagrange multiplier in the Eq. (4.7b) simplifies to a function
evaluation on ∂Ω. For more details, see Section 5.2.

To distinguish this method from the previous section, we shall refer to the Deep Ritz
Uzawa scheme as RitUz and the PINNs Uzawa scheme as PINNUz. This terminology
helps to clearly identify the different iterative schemes discussed. From this scheme, we

can demonstrate the convergence of the sequence uk in an appropriate norm.

Theorem 4.1. Let the sequence uk, λk denote the Uzawa iterates from Definition 4.2, and let
u∗, λ∗ denote the saddle points (4.6). Assume that A is a strictly positive definite matrix, and that
the Uzawa constant ρ > 0 and the stabilisation constant γ satisfy the following inequality:

2γ− ρ > 2. (4.9)

Then, for all s ∈ [0, 1/2), we have

uk → u∗ in Hs(Ω) and L2(∂Ω) as k → ∞. (4.10)

Remark 4.2 (Weaker Convergence for Least Squares). Comparing Theorems 3.1 and 4.1,
we observe several key differences.

Firstly, in the PINNUz scheme, uk converges in Hs for s ∈ [0, 1/2), whereas in the

RitUz scheme, uk converges in H1. This difference arises because the Dirichlet energy
functional is coercive over all of H1(Ω), which facilitates stronger convergence proper-
ties in the RitUz scheme. On the other hand, the least squares energy functional used in
the PINNUz scheme is not coercive over H2(Ω); instead, it only exhibits coercivity over
a weaker space. This reduced coercivity leads to the need for weaker regularity conditions
for convergence in the PINNUz scheme.

Secondly, the inequality in (4.9) does not depend on the matrix A, unlike the corre-
sponding inequality in the RitUz scheme (3.16). This difference can be understood by
recalling the two regimes in the RitUz scheme: when β ≤ 0 and when β > 0. Dependence
on the matrix A was only required in the proof for the case β ≤ 0. In contrast, the PINNUz
scheme operates solely in a regime where β > 0, corresponding to sufficiently large γ.
Specifically, γ must be strictly greater than 1 in the PINNUz scheme, whereas the RitUz
scheme could accommodate cases where γ = 0.

Similar to the proof of Theorem 3.1, we will begin by stating a series of lemmata that
will be used in the proof. Some of these lemmata are analogous to those in the RitUz
scheme but are adapted to highlight the main differences in the PINNUz scheme.

Lemma 4.1 (Bounds on the PINNs Lagrangian). Let uk, λk be as in Definition 4.2, and u∗, λ∗

be as in (4.6). Then

‖L (uk − u∗)‖2
L2(Ω) + γ‖uk − u∗‖2

L2(∂Ω) = 〈λk − λ∗ | uk − u∗〉H−3/2(∂Ω)×H3/2(∂Ω). (4.11)

Proof. Similar to the proof of Lemma 3.1, we compute the Euler-Lagrange equations for u∗

and uk to deduce

〈L u∗ − f , L φ〉L2(Ω) + γ〈u∗ − g, φ〉L2(∂Ω) = 〈λ∗ | φ〉H−3/2(∂Ω)×H3/2(∂Ω),

〈L uk − f , L φ〉L2(Ω) + γ〈uk − g, φ〉L2(∂Ω) = 〈λk | φ〉H−3/2(∂Ω)×H3/2(∂Ω).
(4.12)



J. Mach. Learn., 4(3):166-191 178

Considering the difference between these two equalities and setting φ = uk − u∗ yields
the desired result.

Lemma 4.2. Let {uk, λk} be as given in (4.7), and {u∗, λ∗} be as given in (4.6). Then

‖λk+1 − λ∗‖2
H−3/2(∂Ω)

= ‖λk − λ∗‖2
H−3/2(∂Ω)

− 2ρ〈λk − λ∗ | uk − u∗〉H−3/2(∂Ω)×H3/2(∂Ω)

+ ρ2‖uk − u∗‖2
L2(∂Ω). (4.13)

Proof. The proof follows a similar structure to Lemma 3.2, but instead utilises the repre-

sentor R3 : H−3/2(∂Ω) → H3/2(∂Ω) in place of R1.

Lemma 4.3. Let {uk, λk} be given by (4.7), and {u∗, λ∗} be given by (4.6). Then the sequence of

functions defined by ek := uk − u∗ weakly satisfies the PDE

L ek = 0 on Ω, ∀ k > 0, (4.14)

subject to non-trivial boundary conditions. Additionally, for all s ∈ [0, 1/2), there exists a con-
stant Creg > 0 dependent on L such that

‖ek‖Hs(Ω) ≤ Creg

(

‖ek‖L2(∂Ω) + ‖L ek‖L2(Ω)

)

. (4.15)

Proof. The initial analysis is similar to that found in [8]. The functions uk and u∗ satisfy the
following Euler-Lagrange equations:

〈L u∗ − f , L φ〉L2(Ω) + γ〈u∗ − g, φ〉L2(∂Ω) = 〈λ∗ | φ〉H−3/2(∂Ω)×H3/2(∂Ω),

〈L uk − f , L φ〉L2(Ω) + γ〈uk − g, φ〉L2(∂Ω) = 〈λk | φ〉H−3/2(∂Ω)×H3/2(∂Ω)

(4.16)

for all φ ∈ H2 ∩H1
0(Ω). Thus, for ek := uk − u∗, we have

〈L ek, L φ〉L2(Ω) + γ〈ek, φ〉L2(∂Ω) = 〈λk − λ∗ | φ〉H−3/2(∂Ω)×H3/2(∂Ω). (4.17)

Let w ∈ L2(Ω) be arbitrary, and consider φ as the solution of L φ = w with zero
boundary conditions. Then

〈L ek, L φ〉L2(Ω) + γ〈ek, φ〉L2(∂Ω) − 〈λk − λ∗ | φ〉H−3/2(∂Ω)×H3/2(∂Ω)

= 〈L ek, w〉L2(Ω) = 0, ∀w ∈ L2(Ω). (4.18)

Thus, ek weakly satisfies L ek = 0 on Ω. Using the elliptic regularity estimate from [2],
we deduce the desired result.

4.1 Proof of Theorem 4.1

To prove Theorem 4.1, we use the lemmata developed earlier and a similar approach to

the proof of Theorem 3.1. With β := 2γ− ρ and ek := uk − u∗, by Lemmas 4.1 and 4.2, we
have
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‖λk+1 − λ∗‖2
H−3/2(∂Ω)

= ‖λk − λ∗‖2
H−3/2(∂Ω)

− ρβ‖ek‖2
L2(∂Ω)− 2ρ‖L ek‖2

L2(Ω). (4.19)

Applying Lemma 4.3 along with Young’s inequality, we obtain

‖λk+1 − λ∗‖2
H−3/2(∂Ω)

− ‖λk − λ∗‖2
H−3/2(∂Ω)

≤ −ρ(β− 2)‖ek‖2
L2(∂Ω)−

ρ

C2
reg
‖ek‖2

Hs(Ω). (4.20)

Without loss of generality, assuming ek 6= 0, we see that ‖λk − λ∗‖H−3/2(∂Ω) is a strictly

decreasing sequence. By using (4.9) and the assumption that ρ > 0, the rest of the proof
follows similarly to the proof of Theorem 3.1.

Remark 4.3 (Impact of Stronger Penalties on Convergence). By increasing the strength
of the boundary penalty term to higher-order Sobolev norms, such as H1(∂Ω), it is pos-

sible to establish convergence of uk in stronger norms, such as H3/2(Ω). Implementing
such an H1(Ω) penalty can be practically realised as it requires incorporating tangential
derivatives, which can be efficiently computed and accounted for in many neural network
frameworks.

5 Neural networks and Deep Uzawa

This section outlines the methodology for constructing neural network approximation
schemes and their integration within the Deep Uzawa framework, illustrated through ex-
amples.

5.1 Neural network function approximation

Consider functions uθ approximated by neural networks. A deep neural network maps
each point x ∈ Ω to a value wθ(x) ∈ R through the process

wθ(x) := CL ◦ σ ◦ CL−1 ◦ · · · ◦ σ ◦ C1(x), (5.1)

where Ck represents affine transformations defined by

Cky = Wky + bk, Wk ∈ R
dk+1×dk , bk ∈ R

dk+1 . (5.2)

An illustration of this network structure may be seen in Fig. 5.1.
The parameters θ = {Wk, bk}L

k=1 collectively define the network CL. The set of all such
networks is denoted byN , with the space of functions represented by

VN = {uθ : Ω→ R | uθ(x) = CL(x) for some CL ∈ N}. (5.3)

Note that VN is not a linear space, although Θ = {θ | uθ ∈ VN} is a linear subspace of

RdimN .
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Figure 5.1: Illustration of wθ.

5.2 Training within the Deep Uzawa framework

To implement the Deep Uzawa iteration, we require discrete versions of the energy func-
tionals LD and LR. These can be approximated using quadrature rules for integrals over
Ω and ∂Ω. Let Kh and ∂Kh represent sets of discrete points in Ω and on ∂Ω, respectively,
with weights wy and wb. We approximate the RitzUz functional as

∑
y∈Kh

wyg(y) ≈
∫

Ω
g(x) dx, ∑

b∈∂Kh

wbg(b) ≈
∫

∂Ω
g(x) ds. (5.4)

That is

LD(u, λ) ≈ ∑
y∈Kh

wy

(

1

2

∣

∣A
1
2∇u

∣

∣

2
(y) +

1

2
u2(y)− u(y) f (y)

)

+ ∑
b∈∂Kh

wb

(

γ

2
(u− g)2(b)−

(

u(b)− g(b)
)

λ(b)

)

. (5.5)

For the PINNUz iteration, we define the discrete functional similarly through

LR(u, λ) ≈ 1

2 ∑
y∈Kh

wy|L u− f |2(y)

+ ∑
b∈∂Kh

wb

(

γ

2
(u− g)2(b)−

(

u(b)− g(b)
)

λ(b)

)

. (5.6)

5.3 The Deep Uzawa iteration

The Deep Uzawa algorithm integrates the Uzawa iteration with neural network-based
minimisation, alternating between minimising the discrete energy functional and updat-
ing the Lagrange multiplier. The procedure is detailed in Algorithm 1.

The total number of training epochs is NSGD × NUz.
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Algorithm 1 Deep Uzawa Iteration.

Require: Initial guess λ0, Uzawa step size ρ > 0, number of Uzawa steps NUz, number of
SGD iterations NSGD, learning rate η.

1: k← 0.
2: Initialise neural network parameters θ0.
3: for k = 1 to NUz do
4: for m = 0 to NSGD − 1 do
5: Compute stochastic gradient∇θ LQ,γ(u

m
θ , λk).

6: Update parameters: θm+1 ← θm − η∇θ LQ,γ(u
m
θ , λk).

7: end for
8: uk ← u

NSGD
θ .

9: Update Lagrange multiplier: λk+1(b)← λk(b) + ρ(uk(b)− g(b)), ∀ b ∈ ∂Kh.
10: k← k + 1.
11: end for

6 Numerical results

In this section, we present numerical experiments to evaluate the performance of our pro-
posed methodologies, focusing on the effectiveness of the Deep Uzawa approaches (RitUz
and PINNUz) for singularly perturbed boundary value problems.

For these experiments, we use the PyTorch Adam optimiser [12] with a learning rate
of η = 10−3. Unless stated otherwise, we set NSGD = 40 and NUz = 500, and adopt the
sigmoid-weighted linear unit (SiLU) activation function [5]

σ(x) :=
x

1 + e−x
. (6.1)

The choice of NSGD = 40 was to ensure that the convergence is achieved. In Fig. 6.10,
we explore how the error varies with respect to NSGD for a specific problem. In this case
we observe diminishing returns, with respect to the error, as NSGD increases. The optimal
choice of NSGD will depend on the functional L and the dimension of the problem. The
choice of NUz = 500, was to illustrate the impact that poor choices of ρ and γ have on the
rate of convergence of the error. In practical application, this value may be significantly
lower.

6.1 Example: Two-sided 1D boundary layer

As a benchmark, we consider a singularly perturbed problem on the domain Ω = (0, 1)
with a small parameter ǫ > 0. The exact solution exhibits boundary layers, presenting
a challenge for standard penalty-based neural network approaches that often require care-
ful tuning of penalty weights for accurate results. This example allows us to examine how
varying the parameters ρ, γ, and ǫ influences the performance of RitUz and PINNUz.

We seek u∗ ∈ H1(Ω) that satisfies

−ǫ∆u∗ + u∗ = 1 in Ω, u∗(0) = u∗(1) = 0. (6.2)
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The exact solution is given by

u∗(x) = 1− e(1−x)/
√

ǫ + ex/
√

ǫ

e1/
√

ǫ + 1
, x ∈ Ω. (6.3)

This setup provides a test case to evaluate how RitUz and PINNUz schemes perform
under varying conditions, demonstrating their capability to handle singularly perturbed
problems without extensive tuning. The neural networks used in these experiments have
depth L = 5 and width h = 40, parameterised by θ.

6.1.1 RitUz

Figs. 6.1 and 6.2 show the results of applying the RitUz algorithm to the problem defined
in Example 6.1. In these experiments, we fix the PDE parameter ǫ ∈ {10−1, 10−3} and the
boundary parameter γ ∈ {0, 2}. We vary the Uzawa parameter ρ ∈ [0.01, 20] to study
its impact on convergence. Note that comparison to vanilla penalty methods is given in
Section 6.3.

For both large and small values of ǫ, we observe that the rate of convergence of the L2-
error with respect to the update number increases as ρ increases. This trend holds until ρ

exceeds the bound specified by condition (3.16), after which uk fails to converge to u∗ as
the update number increases.

Figure 6.1: Results for Example 6.1 using the RitUz scheme with γ = 2 and ǫ = 10−1 (left) and ǫ = 10−3

(right). The plots show the state uθ (top), and the L2-error ‖uk − u∗‖L2(Ω) (bottom) as ρ varies in [0.01, 20].
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Figure 6.2: Results for Example 6.1 using the RitUz scheme with γ = 0 and ǫ = 10−1 (left) and ǫ = 10−3

(right). The plots show the state uθ (top), and the L2-error ‖uk − u∗‖L2(Ω) (bottom) as ρ varies in [0.01, 20].

6.1.2 PINNUz

Fig. 6.3 presents the results of the PINNUz algorithm applied to the problem from Ex-
ample 6.1. In these experiments, we fix the PDE parameter ǫ ∈ {10−1, 10−3} and set the
boundary Lagrangian parameter γ = 2. The Uzawa parameter ρ is varied in the range
[10−4, 5] to examine its effect on convergence.

As with the RitUz scheme, we observe that the L2-error convergence rate with respect
to the update number improves as ρ increases. This holds until ρ violates the condition in

Eq. (4.9), causing uk to fail to converge to u∗ as the update number grows.

6.2 Example: 2D L-shaped domain

As highlighted in Remark 4.1, extending our methodology to non-convex domains intro-
duces additional challenges due to geometric singularities. To demonstrate the robustness
of the PINNUz scheme in such settings, we consider a non-convex, two-dimensional L-
shaped domain Ω := (−1, 1)2 \ ([0, 1)× (−1, 0]). In this example, the solution u∗ ∈ H1(Ω)
satisfies the reaction-diffusion equation

−ǫ∆u∗ + u∗ = f in Ω, u = g on ∂Ω. (6.4)
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Figure 6.3: Results for Example 6.1 using the PINNUz scheme with γ = 2 and ǫ = 10−1 (left) and ǫ = 10−3

(right). The plots show the state uθ (top), and the L2-error ‖uk − u∗‖L2(Ω) (bottom) for ρ ∈ [10−4, 5].

We choose f and g so that the exact solution is

u∗(x, y) =
(

x2 + y2
)

2
3 sin

(

2

3
[atan2(y,−x)− π]

)

×
(

(x + 1)2 + (y− 1)2
)

2
3 sin

(

2 · atan2(y− 1, x + 1)
)

. (6.5)

It is chosen to have the correct asymptotic behaviour at the origin whilst also non-trivial
boundary conditions elsewhere. An illustration of this solution is shown in Fig. 6.4(a).

For this experiment, we use η = 10−4. We study the behaviour of the networks for
fixed values of ǫ and γ, while varying ρ. The network architecture differs slightly from the
one-dimensional example, in that L = 10 and h = 40.

Figs. 6.4(b)-6.4(c) displays the state uθ for different values of ρ: two cases where the
solution converges in the L2-norm and one where it diverges. In the convergent cases, we
observe that the approximation struggles to match the boundary data near the re-entrant
corner at (0, 0), a common challenge in non-convex domains due to reduced regularity.
When ρ exceeds the threshold defined in Eq. (4.9), the scheme fails to converge globally.

Similar to the one-dimensional examples, in Fig. 6.5 we observe convergence of the L2-
error, with respect to update number, for small values of ρ and non-convergent behaviour
as ρ exceeds the previously specified bound. Thus demonstrating that the analytical result
is applicable to higher dimensional problems, in non-convex geometry.
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(a) u∗ (b) uθ for ρ = 1 (c) uθ for ρ = 5

Figure 6.4: Example 6.2: (a) Illustration of the exact solution u∗ on the L-shaped domain as defined in Eq. (6.5).
(b) and (c) show the state uθ for γ = 2, ǫ = 10−3, and ρ = 1 and ρ = 5, respectively.

Figure 6.5: Example 6.2: The L2-error ‖uk − u∗‖L2(Ω) for γ = 2, ǫ = 10−1 (left) and ǫ = 10−3 (right) with

ρ ∈ [10−4, 5].

6.3 Validating against penalty-based boundary

Penalty-based methods impose boundary conditions by minimising

uD
θ,γ := min

uθ∈VN

JD(uθ), uR
θ,γ := min

uθ∈VN

JR(uθ), (6.6)

where JD and JR are defined in Eqs. (3.9) and (4.3), respectively. The penalty parameter γ
controls the weight of the boundary condition enforcement.

Penalty-based methods are flexible and straightforward to implement but require care-
ful tuning of γ. High values of γ can lead to better adherence to boundary conditions
but may also cause numerical stiffness and ill-conditioning, making optimisation more
difficult.

6.3.1 RitUz and PINNUz

Figs. 6.6 and 6.7 illustrate the performance of penalty-based methods for different γ val-
ues. For moderate γ, the solution approximates the true solution, but larger γ can lead
to issues with stiffness. The RitUz and PINNUz schemes, implemented with moderate ρ
values and reduced γ, show that these methods can achieve reliable convergence without
extensive parameter tuning.
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Figure 6.6: Example 6.1: For ǫ = 10−1 (left) and ǫ = 10−3 (right), results from minimising JD over VN for
γ ∈ [1, 105]. The plots show the state (top) and L2-error vs. update number (bottom). Outputs of the RitUz
scheme for γ = 0 and ρ = 1 are also shown.

Figure 6.7: Example 6.1: For ǫ = 10−1 (left) and ǫ = 10−3 (right), results from minimising JR over VN for
γ ∈ [1, 105]. The plots show the state (top) and L2-error vs. update number (bottom). Outputs from the
PINNUz scheme for γ = 2 and ρ = 1 are also plotted.
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6.4 Example: Higher-dimensional problems

In this section, we consider solving Laplace’s equation on the 2d-dimensional unit sphere,
extending the problem to higher dimensions. The harmonic function u∗ ∈ H1(Ω) satisfies
the Dirichlet boundary condition

u∗(x) =
d

∑
i=1

x2i−1x2i, ∀ x ∈ S
2d−1. (6.7)

A common method for enforcing boundary conditions directly is through hard imposition,
which modifies the neural network’s output to inherently satisfy the boundary conditions
[14, 15, 21].

6.4.1 RitUz

We compare three methodologies for this problem: hard boundary conditions (cRitz) [14,
21], the Ritz penalty method, and the RitUz scheme.

The cRitz method conditions the neural network output as follows:

(1− |x|2)uθ(x) + |x|2u∗(x) 7→ uθ(x). (6.8)

The penalty method includes a standard L2(∂Ω) penalty, and the RitUz scheme follows
the iterative approach previously described.

For these experiments, collocation points are uniformly sampled within the domain
every 10 epochs, with a batch size of 1024 for the Dirichlet energy computation. Boundary
points are sampled with a batch size of 2048, updated every 10 epochs. In the Uzawa
scheme, an initial fixed set of 2048 boundary points is used for approximating λ. We
employ a network depth of L = 5 and width h = 40.

Fig. 6.8 shows the L2-error of the Ritz methods per epoch, indicating that the RitUz
method with γ = 10 achieves significantly lower errors compared to the penalty method
and performs similarly to the hard boundary condition approach. The increase in error
with dimension suggests that ρ may need to be adjusted due to the dimensional depen-
dency of Ctr, as discussed in Remark 2.1.

Fig. 6.9 shows the L2-error after 50, 000 epochs for each of the three Ritz methods,
plotted against the dimension of the problem. We observe similar performance for low-
dimensional systems between the cRitz and RitUz methods, but a rising trend in the error
of the RitUz method as the dimension increases.

6.4.2 PINNUz

We extend the experiment to PINNs, comparing hard boundary conditions (hPINNs)
[15], penalty PINNs, and the PINNUz scheme. The network architecture and sampling
methodology are as in the previous section.

Fig. 6.10 shows the error variation with respect to NSGD for the PINNUz scheme. High-
er dimensions require more epochs per Uzawa step to maintain accurate updates. For
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Figure 6.8: Example 6.4: Comparison of L2-errors for the cRitz, penalty, and RitUz methods in dimensions 4 (top
left), 6 (top right), 8 (bottom left), and 10 (bottom right) with γ = 10 and ρ = 0.1.

Figure 6.9: Example 6.4: Final L2-errors for the cRitz, penalty, and RitUz methods after 50, 000 epochs for
dimension d = 2, 4, 6, 8, 10.

NSGD = 500, performance matches the hard boundary condition for 2D and 4D problems,
but errors increase for higher dimensions, suggesting that NSGD may need adjustment.

Fig. 6.11 presents the final L2-errors for hPINNs, PINNs and the PINNUz scheme across
dimension. The figure highlights that for lower-dimensional problems (2D and 4D), the
PINNUz scheme performs comparably to hard boundary condition methods, achieving
similar error levels.

Fig. 6.12 shows that the computation time scales approximately linearly with problem
dimension across hPINNs, PINNs, and PINNUz.
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Figure 6.10: Example 6.4.2: Error of the PINNUz scheme versus NSGD for γ = 2, ρ = 0.1, and various dimensions.

Figure 6.11: Example 6.4.2: L2-errors for hard boundary conditions, penalty methods, and the PINNUz scheme
for dimensions 2, 4, 6, and 8, averaged over three trials.

Figure 6.12: Example 6.4.2: Average time per iteration against dimension d = 2, . . . , 100; for hard boundary
conditions (left), penalty methods (centre), and the Uzawa method (right).
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