Boundedness and Compactness of Multilinear Singular Integrals on Morrey Spaces

Ting Mei¹ and Aobo Li^{2,*}

Received April 20, 2023; Accepted April 7, 2024; Published online June 5, 2024.

Abstract. In this paper, we consider the boundedness and compactness of the multi-linear singular integral operator on Morrey spaces, which is defined by

$$T_A f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} R(A;x,y) f(y) dy,$$

where $R(A;x,y) = A(x) - A(y) - \nabla A(y) \cdot (x-y)$ with $D^{\beta}A \in BMO(\mathbb{R}^n)$ for all $|\beta| = 1$. We prove that T_A is bounded and compact on Morrey spaces $L^{p,\lambda}(\mathbb{R}^n)$ for all $1 with <math>\Omega$ and A satisfying some conditions. Moreover, the boundedness and compactness of the maximal multilinear singular integral operator $T_{A,*}$ on Morrey spaces are also given in this paper.

AMS subject classifications: 42B20, 42B25, 47G10

Key words: Multilinear operator, compactness, rough kernel, Morrey space.

1 Introduction

Let \mathbb{S}^{n-1} be the unit sphere in \mathbb{R}^n with the area measure $d\sigma$. Ω is the homogenous function of degree zero on $\mathbb{R}^n \setminus \{0\}$, i.e.,

$$\Omega(\lambda x') = \Omega(x')$$
, for any $\lambda > 0$ and $x' \in \mathbb{S}^{n-1}$, (1.1)

and satisfies the vanishing moment condition of order m-1, i.e.,

$$\int_{\mathbf{S}^{n-1}} \Omega(x') x'^{\beta} d\sigma(x') = 0 \quad \text{for all } \beta \in \mathbb{Z}^n_+ \text{ with } |\beta| = m - 1.$$
 (1.2)

¹ School of Science, Beijing University of Posts and Telecommunications, Key Laboratory of Mathematics and Information Networks (BUPT), Ministry of Education, Beijing 100876, China;

² School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China.

^{*}Corresponding author. Email addresses: meiting@bupt.edu.cn (Mei T), labgyx@bupt.edu.cn (Li A B)

Here and in the sequel, $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{Z}_+^n$ is a multi-indices , $|\beta| = \sum_{j=1}^n \beta_j$ and $x^\beta = \prod_{i=1}^n x_i^{\beta_i}$ where $x \in \mathbb{R}^n$.

In this paper, we want to consider the following multilinear singular integral operator, $T_A^m (m \ge 2)$, which was first introduced by Cohen [12] in 1981 for m = 2, and Cohen and Gosselin [13] in 1982 for m > 2. The definition is as follows:

$$T_A^m f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+m-1}} R_m(A; x, y) f(y) dy,$$
 (1.3)

where $R_m(A;x,y)$ denotes the m-th order Taylor series remainder of the function A at x expanded about y, that is,

$$R_m(A;x,y) = A(x) - \sum_{|\beta| < m} \frac{1}{\beta!} D^{\beta} A(y) (x-y)^{\beta},$$

with
$$\beta! = \beta_1! \cdots \beta_n!$$
, $D^{\beta}A(x) = \frac{\partial^{|\beta|}A}{\partial x_1^{\beta_1} \cdots \partial x_n^{\beta_n}}(x)$. Denote $T_A = T_A^2$ simply.

One can easily see that for m=1, the multilinear singular integral operator T_A^m returns to the classical commutators of singular integrals, which was first introduced by Calderón [5] in 1965. Soon afterward, in 1967, Bajsanski and Coifman [1] considered the L^p -boundedness of the commutators of singular integrals. For $m \ge 2$, it is a non-trivial generalization.

For m=2, Cohen [12] studied the L^p -boundedness of the multilinear operator T_A . Then in 1986, Cohen and Gosselin [14] proved that T_A^m is bounded on $L^p(\mathbb{R}^n)$ for $m \geq 2$ if $\Omega \in Lip(\mathbb{S}^{n-1})$ satisfies (1.1), (1.2) and $D^\beta A \in BMO(\mathbb{R}^n)$ (bounded mean oscillation functions) for all $|\beta| = m-1$ by using the method of the good- λ inequality. In 1994, for m=2, Hofmann [18] improved the result of Cohen, and proved that $\Omega \in \bigcup_{s>1} L^s(\mathbb{S}^{n-1})$ is a sufficient condition such that T_A is bounded on $L^p(\mathbb{R}^n)$ for all p with 1 .

Theorem 1.1 ([18]). Suppose $\Omega \in \bigcup_{s>1} L^s(\mathbb{S}^{n-1})$ satisfies (1.1) and (1.2). Then for A with $\nabla A \in BMO$, T_A is bounded on $L^p(\mathbb{R}^n)$ $(1 with the bound <math>C\sum_{|\beta|=1} \|D^{\beta}A\|_*$.

It is well known that the compact operator is an important concept in analysis. The commutators of many important operators in harmonic analysis are all compact operators on some suitable L^p spaces and Morrey spaces (see [25], [2], [20], [21], [26] and the recent works [3], [4], [6–11], [16], [17]). The L^p -compactness of the commutators of singular integrals $T_A^m(m=1)$ was obtained by Uchiyama [25] in 1978. In 2017, Ding and the first author of this paper [16] also studied the L^p -compactness of T_A^m for $m \ge 2$.

Moreover, the classical Morrey spaces $L^{p,\lambda}(\mathbb{R}^n)$ (see the definition in Section 2) were first introduced by Morrey [24] in 1938 to study the local behavior of solutions of second-order elliptic partial differential equations. Later the Morrey spaces were found to have many important applications to the Navier-Stokes equations, the Schrödinger equations, the elliptic equations with discontinuous coefficients, the potential analysis, and the heat