## Formation of Singularity for Compressible Euler Equations Outside a Ball in 3-D

Mengxuan Li<sup>1</sup> and Jinbo Geng\*

School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China.

Received December 12, 2023; Accepted March 14, 2024; Published online June 5, 2024.

**Abstract.** The initial boundary value problem for a compressible Euler system outside a ball in  $\mathbb{R}^3$  is considered in this paper. Assuming the initial data have small and compact supported perturbations near a constant state, we show that the solution will blow up in a finite time, and the lifespan estimate can be estimated by the small parameter of the initial perturbations. To this end, a "tricky" test function admitting good behavior is introduced.

AMS subject classifications: 35Q31, 35L65, 76N15

**Key words**: Compressible Euler equations, exterior domain, blow-up, impermeable boundary condition.

## 1 Introduction

This paper is concerned about the following initial boundary value problem of compressible Euler system in an exterior domain

$$\begin{cases}
\rho_{t} + \nabla \cdot (\rho u) = 0, & (t, x) \in \mathbf{R}^{+} \times B_{1}^{c}, \\
(\rho u)_{t} + \nabla \cdot (\rho u \otimes u) + \nabla P = 0, & (t, x) \in \mathbf{R}^{+} \times B_{1}^{c}, \\
u(0, x) = \varepsilon u_{0}(x), & \rho(0, x) = \overline{\rho} + \varepsilon \rho_{0}(x), & x \in B_{1}^{c}, \\
u \cdot v \Big|_{\partial B_{1}^{c}} = 0,
\end{cases} (1.1)$$

where  $B_1^c$  denotes the exterior domain outside a unit ball  $B_1 \subset \mathbf{R}^3$ , which is centered at the origin, and  $\nu$  denotes the unit outward normal of  $B_1^c$  to the boundary. Here  $\rho = \rho(t,x)$  and u = u(t,x) are real-valued unknown functions, representing the density and velocity of

<sup>\*</sup>Corresponding author. Email addresses: limengxuan@zjnu.edu.cn (Li M), jinbogeng@zjnu.cn (Geng J)

the flow respectively, and  $\overline{\rho} > 0$  denotes a constant state for the density. We consider the state equation for the gas in the form

$$P = A\rho^{\gamma}$$
,

with A > 0,  $\gamma > 1$  are constants. Also,  $\varepsilon > 0$  is a parameter representing the smallness of the initial perturbation of density and velocity satisfying

$$(u_0(x), \rho_0(x)) \in C_0^{\infty}(B_1^c), \quad supp(u_0(x), \rho_0(x)) \subset \{x \mid |x| \le R\},$$
 (1.2)

where R > 1 is a fixed constant (in the following we may assume R = 2 for convenience). The boundary condition  $(1.1)_4$  corresponds to the impermeable boundary which is stationary and different from the free surface. It can be used to describe a simple type of boundary of an impermeable wall, such as the side of a wave tank or the hull of a ship.

There is extensive literature on the formation of singularity for compressible Euler equations. For the most relevant corresponding Cauchy problem with small perturbations, we refer to Sideris [20] in  $\mathbb{R}^3$ , Rammaha [18] in  $\mathbb{R}^2$  and Jin-Zhou [8] in  $\mathbb{R}^n$  (n=1,2,3). Also, the lifespan estimate is studied in [1,21,22].

Secchi [19] considered the exterior problem of the Euler equations for a barotropic inviscid compressible fluid in  $\Omega \subset \mathbf{R}^2$ , assuming the boundary  $\partial \Omega$  is smooth and convex. The lifespan estimate from below (the largest time interval over which there exists a classical solution) was established. For some recent long-time behavior results on the related fluid models in the exterior domain, see [2], [16] and references therein.

Recently, the finite time blow-up result for compressible Euler system in the exterior domain in  $\mathbf{R}^n(n=2,3)$  are established in [4], where the obstacle is convex and abstract test functions are introduced. In this paper, we consider the finite blow-up outside a ball in  $\mathbf{R}^3$ , in which case an explicit test function can be found, and hence the asymptotic behavior of which is easy to get. Such kind of method can be found in [8,13,14,27].

**Remark 1.1.** We should mention that there are so many other long-term behavior results including singularity formation and global existence for compressible Euler and Navier-Stokes systems that it is impossible for us to list all of them, see [5,7,9,11,15,23–25] and references therein.

Our main result states as follows.

**Theorem 1.1.** Assuming the initial perturbations  $u_0(x)$ ,  $\rho_0(x)$  satisfy (1.2) and

$$\varepsilon \left( \int_{B_1^c} \rho_0(x) \phi(x) dx + \int_{B_1^c} u_0(x) \cdot \nabla \phi dx \right) \triangleq \frac{1}{2} C\varepsilon > 0,$$

where  $\phi(x)$  is defined in (3.1). We also assume the initial velocity  $u_0(x)$  satisfies the necessary compatibility conditions to some order, i.e.

$$\partial_t^k u_0(x) \cdot v = 0$$
,  $x \in \partial B_1^c$ ,  $k = 0,1$ .