On Smooth Families of Diffeomorphic Manifolds and Their Distribution Function

Simone Calamai*

Department of Mathematics and Computer Science, University of Florence, Viale Morgagni 67/a, 50134, Florence, Italy.

Received May 16, 2023; Accepted June 30, 2023; Published online June 5, 2024.

Abstract. We present a formula for the third derivative of the distribution function of a regular function on a domain of \mathbb{R}^{n+1} , and a further discussion of the extra assumption that the function is harmonic. The present work builds on [3,5].

AMS subject classifications: 53-XX **Key words**: Level set, third variation.

1 Introduction

Given a regular function u on a domain of \mathbb{R}^{n+1} , its distribution function V(t) is the Hausdorff measure of its level subset t. The expressions and some inequalities about the first and the second derivative of V were studied in [3,5]. In the present note, we present a formula for V'''; namely

Theorem 1.1. Suppose that $\Omega \subset \mathbb{R}^{n+1}$ is a bounded open set, and that $u \in C^2(\overline{\Omega})$ is constant on each connected component of $\partial\Omega$. Let t_1,t_2 be such that $-\infty \le t_1 < t_2 \le \infty$ and suppose that in $\{x \in \Omega | t_1 \le u(x) \le t_2\}$ there exists a positive constant c such that $|\nabla u| \ge c$. Then, for any $t \in (t_1,t_2)$ we have that

$$V'''(t) = \int_{\{u=t\}} \frac{6S_1^2}{|\nabla u|^3} dH^n + \int_{\{u=t\}} \frac{2S_2}{|\nabla u|^3} dH^n + \int_{\{u=t\}} \frac{-9S_1 \Delta u}{|\nabla u|^4} dH^n$$

$$+ \int_{\{u=t\}} \frac{3(\Delta u)^2}{|\nabla u|^5} dH^n + \int_{\{u=t\}} \frac{u_{NNN}}{|\nabla u|^4} dH^n,$$

$$(1.1)$$

where H^n is the n-dimensional Hausdorff measure. Here above S_r , for each $r \in \{0,...,n\}$ stands for the r-th elementary symmetric functions of the principal curvatures of $\{u=t\}$; moreover N is the normal unit vector to $\{u=t\}$, and u_{NNN} is the third derivative of u in the N-direction.

^{*}Corresponding author. Email addresses: simone.calamai@unifi.it (Calamai S)

Remark 1.1. The assumptions in Theorem 1.1 on the non-vanishing of the gradient of u are needed to build on [3]. In order to apply [5] it is needed that the level sets of u in $\{x \in \Omega | t_1 \le u(x) \le t_2\}$ are mutually diffeomorphic: this is guaranteed by the following observation by Professor LeBrun. Let T be the value of u on the boundary $\partial\Omega$, and assume for a moment that T does not belong to $[t_1,t_2]$. Since the closure of the domain is compact, the restriction of the function u to $u^{-1}([t_1,t_2])$ is proper. But we have assumed that the gradient of u is everywhere non-zero, so now we are in a position to apply Theorem 3.1 of [4] which ensures that the level sets of u are in $\{x \in \Omega | t_1 \le u(x) \le t_2\}$ diffeomorphic. The above discussion assumes that T does not belong to $[t_1,t_2]$. But with assumptions of Theorem 1.1 the only alternatives left are that either $T=t_1$ and the gradient of u is inward-pointing, or $T=t_2$ and the gradient of u is outward-pointing; in both cases, the level set where u=T is a smooth compact hypersurface, still diffeomorphic to the other level sets.

In particular, all the level sets of u in $\{x \in \Omega \mid t_1 \le u(x) \le t_2\}$ have the same number of connected components, and we can then apply, to the sub-domains represented by each connected component, the argument that we will describe for one connected component. Incidentally, each component of a level set is now a smooth connected compact real hypersurface in \mathbb{R}^{n+1} , and so disconnects \mathbb{R}^{n+1} into an j°insidej± and an j°outsidej± by the smooth Jordan-Brouwer separation theorem. So we could then just restrict to the regions inside appropriately chosen components of the level surfaces.

The note is organized as follows: the second section contains a recap of the results needed from [3,5]; the third section contains the proof of Theorem 1.1, and the third section contains a discussion on the case when the extra assumption of harmonicity of u is assumed.

2 Background environment

In the work of Reilly [5] it is considered family, depending smoothly from the parameter $t \in (-\epsilon, \epsilon)$, of smooth immersions

$$x = X_t : M^n \to S^{n+1}(c),$$

where M^n is a smooth manifold of real dimension n without boundary, and $S^{n+1}(c)$ is the simply connected n+1 dimensional space form of curvature c. Whence M^n , as smooth hypersurface of $S^{n+1}(c)$, has principal curvatures k_1, \ldots, k_n . As S_r , for each $r \in \{0, \ldots, n\}$ is labeled the r-th elementary symmetric functions of the principal curvatures; hence, for example, $S_0 = 1$, $S_1 = k_1 + \ldots + k_n$, ..., $S_n = k_1 \cdot \ldots \cdot k_n$. To recall the main formula in [5], we consider the case when c = 0, letting <, > be the Euclidean metric on \mathbb{R}^{n+1} and setting P := < X, N > be the support function, where N is the normal vector to M^n . Moreover, we set $Q := \frac{1}{2}|X|^2$, $\xi := \frac{\partial X}{\partial t}$, $\lambda := < N$, $\frac{\partial X}{\partial t} >$; the volume form is denoted as $d\mu$. Finally, we let B be is the shape operator, i.e., B is the symmetric linear transformation associated