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Abstract. In this paper, we prove an optimal Heintze-Karcher-type inequality for ani-
sotropic free boundary hypersurfaces in general convex domains. The equality is
achieved for anisotropic free boundary Wulff shapes in a convex cone. As applica-
tions, we prove Alexandrov-type theorems in convex cones.
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1 Introduction
The Heintze-Karcher inequality states that for a bounded domain Q) in R" ! with smooth
and mean convex boundary > =09(), it holds that

1 n+1
/EHdA_ o), (1.1)

and equality in (1.1) holds if and only if ¥ is a geodesic sphere. Here H is the mean
curvature of ¥ and X is said to be mean convex if H > 0. It was first proved by Heintze-
Karcher [8] and in the present form (1.1) by Ros [17]. A combination of the Heintze-
Karcher inequality (1.1) and the Minkowski-Hsiung formula yields Alexandrov’s the-
orem for embedded closed constant mean curvature (CMC) hypersurfaces, namely any
closed embedded CMC hypersurface is a sphere, first proved by Alexandrov [1] via mov-
ing plane method and by Reilly [16] and Ros [17] via integral method. For the history
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of the study of Heintze-Karcher’s inequality and Alexandrov’s theorem, we refer to [9]
and the references therein. An anisotropic version of the Heintze-Karcher inequality has
been proved by He-Li-Ma-Ge [7], which leads to an Alexandrov-type theorem for embed-
ded closed constant anisotropic mean curvature hypersurfaces. Heintze-Karcher-type in-
equalities in space forms and more generally, in warped product manifolds, have been
proved by Brendle [2] (see also [12]).

Recently, we have studied the Heintze-Karcher-type inequality for hypersurfaces with
boundary in the half-space R = {x € R"*!|(x,E, 1) >0}. Precisely, we prove the fol-
lowing result.

Theorem 1.1 ([9,10]). Let £ C R be an embedded compact C2-hypersurface with boundary
OX. which intersects IR transversally such that (vp(x),—E,.1) <0 for any x €9%. Let Q)
denote the domain enclosed by ¥ and OR"*'. Assume the anisotropic mean curvature HF of ¥ is
positive. Then we have

F(v) n+1
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Moreover, equality in (1.2) holds if and only if X is an anisotropic free boundary Wulff cap.

A hypersurface ¥, which intersects 9R"."! transversally, is called anisotropic free
boundary if (vg(x),—E,+1) =0 for any x € 9%, where vr is the anisotropic normal of . A
Waulff cap is part of a Wulff shape. Regarding the anisotropy F and anisotropic quantities
with a sub- or superscription F, we use the notations in [10]. A brief overview is also
provided in Section 2.

Using Theorem 1.1, we have proved an Alexandrov-type theorem for anisotropic free
boundary or anisotropic capillary hypersurfaces in R""!. This Alexandrov-type theorem
for isotropic capillary hypersurfaces in R was first proved by Wente [21] via moving
plane method.

In this paper, we continue the study of Heintze-Karcher-type inequality in a more gen-
eral setting, in particular, for hypersurfaces with boundary in general convex domains.

Let K be the class of all convex domains in R""!. We emphasize that in this paper
for each K € K, 9K is not assumed to be C!, in other words, 9K may have singularity. In
order not to make situations too complicated, we restrict us to consider a subset of I,
denoted by Kp, which contains convex domains with milder singularities, which we will
describe.

We first define the class of convex polytopes with non-empty interior by P. Each
element P € P can be expressed

P=("{u;<0},

i€l

where ] is a finite index set and u; (j € J) are affine linear functions on R"*!, ie., P is
determined by a family of inequalities u; <0 (j € J). The family is called irredundant if
P#Njej j2{u; <0} for any I € ]. We can and will always assume that P is irredundant. A



