Heintze-Karcher Inequality for Anisotropic Free Boundary Hypersurfaces in Convex Domains

Xiaohan Jia¹, Guofang Wang², Chao Xia^{3,*} and Xuwen Zhang³

Received April 4, 2024; Accepted July 11, 2024; Published online September 26, 2024.

Abstract. In this paper, we prove an optimal Heintze-Karcher-type inequality for anisotropic free boundary hypersurfaces in general convex domains. The equality is achieved for anisotropic free boundary Wulff shapes in a convex cone. As applications, we prove Alexandrov-type theorems in convex cones.

AMS subject classifications: 53C45, 53A10, 53C42

Key words: Heintze-Karcher's inequality, constant mean curvature, free boundary surface, capillary surface, convex cone.

1 Introduction

The Heintze-Karcher inequality states that for a bounded domain Ω in \mathbb{R}^{n+1} with smooth and mean convex boundary $\Sigma = \partial \Omega$, it holds that

$$\int_{\Sigma} \frac{1}{H} dA \ge \frac{n+1}{n} |\Omega|, \tag{1.1}$$

and equality in (1.1) holds if and only if Σ is a geodesic sphere. Here H is the mean curvature of Σ and Σ is said to be mean convex if H > 0. It was first proved by Heintze-Karcher [8] and in the present form (1.1) by Ros [17]. A combination of the Heintze-Karcher inequality (1.1) and the Minkowski-Hsiung formula yields Alexandrov's theorem for embedded closed constant mean curvature (CMC) hypersurfaces, namely any closed embedded CMC hypersurface is a sphere, first proved by Alexandrov [1] via moving plane method and by Reilly [16] and Ros [17] via integral method. For the history

¹ School of Mathematics, Southeast University, Nanjing 211189, China;

² Mathematisches Institut, Universität Freiburg, Ernst-Zermelo-Str.1, Freiburg 79104, Germany;

³ School of Mathematical Science, Xiamen University, Xiamen 361005, China.

^{*}Corresponding author. *Email addresses:* xhjia@seu.edu.cn (Jia X), guofang.wang@math.uni-freiburg.de (Wang G), chaoxia@xmu.edu.cn (Xia C), math.xuwenzhang@gmail.com (Zhang X)

of the study of Heintze-Karcher's inequality and Alexandrov's theorem, we refer to [9] and the references therein. An anisotropic version of the Heintze-Karcher inequality has been proved by He-Li-Ma-Ge [7], which leads to an Alexandrov-type theorem for embedded closed constant anisotropic mean curvature hypersurfaces. Heintze-Karcher-type inequalities in space forms and more generally, in warped product manifolds, have been proved by Brendle [2] (see also [12]).

Recently, we have studied the Heintze-Karcher-type inequality for hypersurfaces with boundary in the half-space $\mathbb{R}^{n+1}_+ = \{x \in \mathbb{R}^{n+1} | \langle x, E_{n+1} \rangle > 0\}$. Precisely, we prove the following result.

Theorem 1.1 ([9,10]). Let $\Sigma \subset \overline{\mathbb{R}^{n+1}_+}$ be an embedded compact C^2 -hypersurface with boundary $\partial \Sigma$ which intersects $\partial \mathbb{R}^{n+1}_+$ transversally such that $\langle \nu_F(x), -E_{n+1} \rangle \leq 0$ for any $x \in \partial \Sigma$. Let Ω denote the domain enclosed by Σ and $\partial \mathbb{R}^{n+1}_+$. Assume the anisotropic mean curvature H^F of Σ is positive. Then we have

$$\int_{\Sigma} \frac{F(\nu)}{H^F} dA \ge \frac{n+1}{n} |\Omega|. \tag{1.2}$$

Moreover, equality in (1.2) holds if and only if Σ is an anisotropic free boundary Wulff cap.

A hypersurface Σ , which intersects $\partial \mathbb{R}^{n+1}_+$ transversally, is called anisotropic free boundary if $\langle \nu_F(x), -E_{n+1} \rangle = 0$ for any $x \in \partial \Sigma$, where ν_F is the anisotropic normal of Σ . A Wulff cap is part of a Wulff shape. Regarding the anisotropy F and anisotropic quantities with a sub- or superscription F, we use the notations in [10]. A brief overview is also provided in Section 2.

Using Theorem 1.1, we have proved an Alexandrov-type theorem for anisotropic free boundary or anisotropic capillary hypersurfaces in \mathbb{R}^{n+1}_+ . This Alexandrov-type theorem for isotropic capillary hypersurfaces in \mathbb{R}^{n+1}_+ was first proved by Wente [21] via moving plane method.

In this paper, we continue the study of Heintze-Karcher-type inequality in a more general setting, in particular, for hypersurfaces with boundary in general convex domains.

Let K be the class of all convex domains in \mathbb{R}^{n+1} . We emphasize that in this paper for each $K \in K$, ∂K is not assumed to be C^1 , in other words, ∂K may have singularity. In order not to make situations too complicated, we restrict us to consider a subset of K, denoted by K_P , which contains convex domains with milder singularities, which we will describe.

We first define the class of convex polytopes with non-empty interior by \mathcal{P} . Each element $P \in \mathcal{P}$ can be expressed

$$P = \bigcap_{j \in I} \{u_j \leq 0\},\,$$

where J is a finite index set and u_j $(j \in J)$ are affine linear functions on \mathbb{R}^{n+1} , i.e., P is determined by a family of inequalities $u_j \le 0$ $(j \in J)$. The family is called *irredundant* if $P \ne \bigcap_{i \in I, i \ne l} \{u_i \le 0\}$ for any $l \in J$. We can and will always assume that P is irredundant. A