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Abstract. In this paper, we prove an optimal Heintze-Karcher-type inequality for ani-
sotropic free boundary hypersurfaces in general convex domains. The equality is
achieved for anisotropic free boundary Wulff shapes in a convex cone. As applica-
tions, we prove Alexandrov-type theorems in convex cones.
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1 Introduction

The Heintze-Karcher inequality states that for a bounded domain Ω in Rn+1 with smooth
and mean convex boundary Σ=∂Ω, it holds that∫

Σ

1
H

dA≥ n+1
n

|Ω|, (1.1)

and equality in (1.1) holds if and only if Σ is a geodesic sphere. Here H is the mean
curvature of Σ and Σ is said to be mean convex if H>0. It was first proved by Heintze-
Karcher [8] and in the present form (1.1) by Ros [17]. A combination of the Heintze-
Karcher inequality (1.1) and the Minkowski-Hsiung formula yields Alexandrov’s the-
orem for embedded closed constant mean curvature (CMC) hypersurfaces, namely any
closed embedded CMC hypersurface is a sphere, first proved by Alexandrov [1] via mov-
ing plane method and by Reilly [16] and Ros [17] via integral method. For the history
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of the study of Heintze-Karcher’s inequality and Alexandrov’s theorem, we refer to [9]
and the references therein. An anisotropic version of the Heintze-Karcher inequality has
been proved by He-Li-Ma-Ge [7], which leads to an Alexandrov-type theorem for embed-
ded closed constant anisotropic mean curvature hypersurfaces. Heintze-Karcher-type in-
equalities in space forms and more generally, in warped product manifolds, have been
proved by Brendle [2] (see also [12]).

Recently, we have studied the Heintze-Karcher-type inequality for hypersurfaces with
boundary in the half-space Rn+1

+ = {x∈Rn+1|⟨x,En+1⟩> 0}. Precisely, we prove the fol-
lowing result.

Theorem 1.1 ([9, 10]). Let Σ⊂Rn+1
+ be an embedded compact C2-hypersurface with boundary

∂Σ which intersects ∂Rn+1
+ transversally such that ⟨νF(x),−En+1⟩ ≤ 0 for any x ∈ ∂Σ. Let Ω

denote the domain enclosed by Σ and ∂Rn+1
+ . Assume the anisotropic mean curvature HF of Σ is

positive. Then we have ∫
Σ

F(ν)
HF dA≥ n+1

n
|Ω|. (1.2)

Moreover, equality in (1.2) holds if and only if Σ is an anisotropic free boundary Wulff cap.

A hypersurface Σ, which intersects ∂Rn+1
+ transversally, is called anisotropic free

boundary if ⟨νF(x),−En+1⟩=0 for any x∈∂Σ, where νF is the anisotropic normal of Σ. A
Wulff cap is part of a Wulff shape. Regarding the anisotropy F and anisotropic quantities
with a sub- or superscription F, we use the notations in [10]. A brief overview is also
provided in Section 2.

Using Theorem 1.1, we have proved an Alexandrov-type theorem for anisotropic free
boundary or anisotropic capillary hypersurfaces in Rn+1

+ . This Alexandrov-type theorem
for isotropic capillary hypersurfaces in Rn+1

+ was first proved by Wente [21] via moving
plane method.

In this paper, we continue the study of Heintze-Karcher-type inequality in a more gen-
eral setting, in particular, for hypersurfaces with boundary in general convex domains.

Let K be the class of all convex domains in Rn+1. We emphasize that in this paper
for each K∈K, ∂K is not assumed to be C1, in other words, ∂K may have singularity. In
order not to make situations too complicated, we restrict us to consider a subset of K,
denoted by KP, which contains convex domains with milder singularities, which we will
describe.

We first define the class of convex polytopes with non-empty interior by P . Each
element P∈P can be expressed

P=
⋂
j∈J

{uj ≤0},

where J is a finite index set and uj (j ∈ J) are affine linear functions on Rn+1, i.e., P is
determined by a family of inequalities uj ≤ 0 (j ∈ J). The family is called irredundant if
P ̸=⋂j∈J,j ̸=l{uj≤0} for any l∈ J. We can and will always assume that P is irredundant. A


