Fundamental Groups of Manifolds of Positive Sectional Curvature and Bounded Covering Geometry

Xiaochun Rong^{1,2,*}

Received April 28, 2024; Accepted May 17, 2024; Published online September 26, 2024.

Abstract. Let M be an n-manifold of positive sectional curvature ≥ 1 . In this paper, we show that if the Riemannian universal covering has volume at least v > 0, then the fundamental group $\pi_1(M)$ has a cyclic subgroup of index bounded above by a constant depending only on n and v.

AMS subject classifications: 53C21, 53C23, 53C24

Key words: Positive sectional curvature, fundamental groups, the c(n)-cyclic conjecture.

1 Introduction

In this paper, we study the fundamental group of a complete (odd-dimensional) manifold *M* of positive sectional curvature.

If M is not compact, then M is diffeomorphic to an Euclidean space ([16]), and if M is compact (closed without boundary), then the fundamental group of M is finite (Bonnet theorem), and the Synge theorem asserts that for $n=\dim(M)$ even, M is simply connected or M is not orientable, and for n odd, M is orientable. Indeed, in each odd-dimension, the spherical space forms contain infinitely many fundamental groups ([40]).

A core problem in Riemannian geometry has been finding a topological obstruction on a compact (simply connected) manifold of non-negative sectional curvature which does not support a metric of positive sectional curvature. By Sygne theorem, given each $2n \ge 4$, the 2n-manifold which is the metric product of two real projective spaces supports no metric of positive sectional curvature; while the Hopf conjecture has been open, which asserts that the product of two unit spheres admits no metric of positive sectional curvature.

¹ Mathematics Department, Rutgers University New Brunswick, NJ 08903 USA;

² Mathematics Department, Capital Normal University, Beijing 100875, China.

^{*}Corresponding author. Email address: rong@math.rutgers.edu (Rong X)

In view of the above, a natural problem is to find, in odd dimensions, a constraint on the structure of fundamental groups.

Conjecture 1.1 (c(n)-cyclicity, [32]). Let M be a compact n-manifold of positive sectional curvature. Then the fundamental group of M is c(n)-cyclic i.e., $\pi_1(M)$ contains a normal cyclic subgroup of index $\leq c(n)$, a constant depending only on n.

In Conjecture 1.1, a bound on index depending on n is of necessary (e.g., fundamental groups of spherical n-forms, [40]). Conjecture 1.1 proposes a dimension-related structural constraint on a fundamental group; e.g., Conjecture 1.1 implies that for any integer h > c(9), the metric product of spherical space forms, $M = S_1^3 \times (S_1^3/\mathbb{Z}_h) \times (S_1^3/\mathbb{Z}_h)$ (orientable), admits no metric of positive sectional curvature.

Conjecture 1.1 was partially motivated by a result in [32] (see Theorem 1.1 below), which was from an early attempt to the problem of Chern [10]: if any abelian subgroup of the fundamental group is cyclic (an analogue of Preissmann theorem on a compact manifold of negative sectional curvature). Negative answers have been found in dimensions 7 [18, 35] and 13 [1]; the only odd dimensions in which (infinitely many) simply connected compact manifolds of positive sectional curvature are constructed.

Theorem 1.1. Let M be a compact n-manifold of positive sectional curvature, $\sec_M \ge 1$. Conjecture 1.1 holds for either of the following classes of manifolds:

- (S1.1) [33,38] The isometry group of the Riemannian universal covering space, $\pi: \tilde{M} \to M$, has a positive dimension.
- (S1.2) [32,33] M satisfies that $\sec_M \le K$ and its volume $vol(M) < \epsilon(n)$, a small constant depending only on n.

Note that (S1.1) was obtained in [33] by assuming that \tilde{M} admits an isometric torus T^k -action ($k \ge 1$) whose orbits are preserved by the $\pi_1(M)$ -action, and the $\pi_1(M)$ -invariance is always satisfied for a subgroup of $\pi_1(M)$ of index bounded above by a constant depending only on n ([38]).

A proof of (S1.1) relies on the Synge theorem and the total Betti number estimate in [17]: without loss of generality, we may assume that M admits an isometric S^1 -action, and $\pi_1(M)$ is not cyclic. By a Synge type argument, there is a subgroup $\mathbb{Z}_p < S^1$ (p is a prime) with fixed point set, $F(M,\mathbb{Z}_p) = \bigcup_{j=0}^{k-1} F_j \neq \emptyset$ (F_j denotes a component), such that $S^1|_{F_0}$ is not trivial. This allows one to apply induction on dimension to (F_0,S^1) , and conclude that the subgroup, $\Lambda = \text{Im}[\pi_1(F_0) \to \pi_1(M)]$, has a cyclic subgroup of index $c_1(n)$. It is not hard to show that the index, $[\pi_1(M):\Lambda] \leq kl$, where l denotes the maximal number of components of $\pi^{-1}(F_j)$ ($0 \leq j \leq k-1$), and $k \leq \text{rank}(H_*(M,\mathbb{Z}_p))$ and $l \leq \text{rank}(H_*(M;\mathbb{Z}_p))$ ([2]), which is bounded above by a constant $c_2(n)$ ([17]).

A proof of (S1.2) is to show that *M* admits a nearby metric satisfying (S1.1), based on the singular nilpotent fibration theorem on a collapsed manifold with bounded sectional