
J. Math. Study
doi: 10.4208/jms.v57n4.24.04

Vol. 57, No. 4, pp. 460-475
December 2024

Numerical Investigation of the Three-Dimensional
Time-Fractional Extended Fisher-Kolmogorov
Equation via a Meshless Method

Jiaqi Liu and Cui-Cui Ji *

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China.

Received November 7, 2023; Accepted July 18, 2024;
Published online December 24, 2024.

Abstract. In this paper, we develop an efficient meshless technique for solving numer-
ical solutions of the three-dimensional time-fractional extended Fisher-Kolmogorov
(TF-EFK) equation. Firstly, the L2-1σ formula on a general mesh is used to discretize
the Caputo fractional derivative, and then a weighted average technique at two neigh-
boring time levels is adopted to implement the time discretization of the TF-EFK equa-
tion. After applying this time discretization, the generalized finite difference method
(GFDM) is introduced for the space discretization to solve the fourth-order nonlinear
algebra system generated from the TF-EFK equation with an arbitrary domain. Nu-
merical examples are investigated to validate the performance of the proposed mesh-
less GFDM in solving the TF-EFK equation in high dimensions with complex domains.
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1 Introduction

The fractional calculus has been widely applied to all related fields of science and en-
gineering [1–15], such as physics, biology, material, mechanics, etc. For instance, the
non-integer (between 0 and 1) power of frequency in Cole expression for the membrane
reaction was used to fit the experimental data [1]. As pointed out in [1], fractional ki-
netic equations with the fractional-order derivatives (between 0 and 1) in time govern
the ultraslow diffusion, which are called sub-diffusion models. Fractional kinetic equa-
tions have gained much success in depicting anomalous diffusion in transport process
thorough random environments and non-exponential relaxation patterns [16, 17].
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The extended Fisher-Kolmogorov (EFK) equation is a significant category of nonlin-
ear reaction-diffusion models, frequently encountered in bi-stable systems [18]. The EFK
equation can capture essential features of the underlying problems arising in population
dynamics [19], chemical kinetics [20], brain tumor dynamics [21], propagation of domain
walls in liquid crystals [22], etc. In this paper, we consider a sub-diffusion nonlinear
model by introducing a Caputo fractional derivative of order α (0< α< 1) into the EFK
equation:

∂αu(x,t)
∂tα

+γ∆2u(x,t)−∆u(x,t)+G(u(x,t))= f (x,t), x∈Ω, t∈ (0,T], (1.1)

under the given initial condition u(x,t=0)|x∈Ω =u0(x) and boundary conditions

u(x,t)|x∈∂Ω =ψ1(x,t),
∂u(x,t)

∂n
|x∈∂Ω =ψ2(x,t) for t∈ (0,T],

where the function u(x,t) denotes a physical quantity (e.g., the evolution of a population
density); ∆ is the Laplace operator; γ is a positive constant; Ω denotes a bounded domain,
and ∂Ω denotes the boundary of Ω; n denotes the unit normal vector on the boundary;
u0(x), f (x,t), ψ1(x,t) and ψ2(x,t) are given functions, and the nonlinear term G(u(x,t))=
u3(x,t)−u(x,t); and in the Caputo fractional derivative definition, ∂αu(x,t)

∂tα is defined by [1]

∂αu(x,t)
∂tα

=
1

Γ(1−α)

∫ t

0

∂u(x,s)
∂s

ds
(t−s)α

, 0<α<1. (1.2)

The sub-diffusion nonlinear model (called as the time-fractional EFK equation or the
TF-EFK equation) in Eq. (1.1) denotes a fractional form of the EFK equation. When
α=1, the TF-EFK equation (1.1) reduces to the integer-order EFK equation given in [18].
It is well known that the study of the solution of the EFK-type model with the initial
and boundary conditions (IBCs) tends to capture the essential features of the dynamics
in complex systems. However, it is difficult to work out the analytical solution of the
EFK-type model with IBCs, since it is a class of nonlinear model. Accordingly, the nu-
merical study of the EFK-type model with IBCs is critical. For the integer-order EFK
model, there exist many research studies on numerical methods, such as the finite dif-
ference method [23–27], the finite element method [28–31], the collocation method [32],
etc. For the fractional EFK-type model, based on the literature review, the study of its
numerical methods is relatively limited. Shamseldeen et al. [33] used the optimal homo-
topy analysis method to compute the approximate solution of a 1D space-time fractional
EFK equation. Hosseininia et al. [34] proposed a numerical method for solving the 2D
variable-order fractional EFK equation on the regular geometries (i.e., rectangular) based
on the orthonormal shifted discrete Legendre polynomials and the collocation method.

It is should be noted that when solving partial differential equations (PDEs) in com-
plex areas (e.g., irregular areas in high-dimension), the numerical simulation of bound-
ary domain based on the mesh-dependent numerical methods, like the finite difference
method, is tedious in general.


