Endpoint Estimates for an Oscillatory Multiplier Associated with Wave Equations on the Torus

Ziyao Liu^{1,*} and Dashan Fan²

Received December 15, 2023; Accepted September 5, 2024; Published online December 24, 2024.

Abstract. In this paper, we establish the endpoint estimate for an oscillatory multiplier associated with wave equations on the torus, which extends the results of Fan and Sun. In addition, we obtain a more general result for sublinear operators on compact measure spaces.

AMS subject classifications: 42B15, 42B25, 42B99

Key words: Oscillatory multiplier, wave equation, compact measure spaces.

1 Introduction

In this article, we concern the Cauchy problem of the wave equation

$$\partial_{tt}u(x,t) - \Delta u(x,t) = 0, \quad (x,t) \in \mathbb{R}^n \times \mathbb{R},$$

 $u(x,0) = 0, \quad \partial_t u(x,0) = f(x),$

where Δ denotes the Laplacian on \mathbb{R}^n . The solution u is formally given by

$$u(x,t) = \left(\frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}}f\right)(x).$$

To study the behavior of the solution, we need to write the operator $\frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}}$ as a sum of its high frequency part and low frequency part. For this reason, we pick two radial

¹ Department of Mathematical Science, Zhejiang Normal University, Jinhua 321004, China:

² Department of Mathematical Science, University of Wisconsin-Milwaukee, Milwaukee WI 53201, USA.

^{*}Corresponding author. Email address: zy.liu@zjnu.edu.cn (Liu Z), fandashan2@zjnu.edu.cn (Fan D)

functions $\Phi, \Psi \in C^{\infty}(\mathbb{R}^n)$ satisfying that $\Psi(\lambda) \equiv 1$ on the set $\{\lambda: |\lambda| > 5/3\}$ and is supported on the set $\{\lambda: |\lambda| > 3/5\}$, and

$$\Phi(\lambda) = 1 - \Psi(\lambda)$$
.

Then we write

$$\frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}} = \frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}} \Phi\left(t\sqrt{|\Delta|}\right) + \frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}} \Psi\left(t\sqrt{|\Delta|}\right).$$

It is easy to check that

$$\frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}}\Phi\left(t\sqrt{|\Delta|}\right)$$

is bounded on $L^p(\mathbb{R}^n)$ for any $p \ge 1$. Thus to study the $L^p(\mathbb{R}^n)$ boundedness of $\frac{\sin(t\sqrt{|\Delta|})}{\sqrt{|\Delta|}}$, now it suffices to study the $L^p(\mathbb{R}^n)$ boundedness of $\frac{\sin(\sqrt{|\Delta|})}{\sqrt{|\Delta|}}\Psi\left(\sqrt{|\Delta|}\right)$, where we may fix t = 1 without loss of generality ([3,7,8,10]).

By checking the Fourier transform, it is not difficult to see that the multiplier of $\frac{\sin(\sqrt{|\Delta|})}{\sqrt{|\Delta|}} \Psi\left(\sqrt{|\Delta|}\right)$ is

$$\frac{\sin|\xi|}{|\xi|}\Psi(|\xi|).$$

Thus, to obtain $L^p_\beta \to L^p$ boundedness, we naturally consider a general oscillatory integral operator on \mathbb{R}^n defined by

$$S_{\alpha,m}(f) = K_{\alpha,m} * f$$

where $K_{\alpha,m}$ is a distribution kernel whose Fourier transform is

$$\widehat{K_{\alpha,m}}(\xi) = e^{ci|\xi|}|\xi|^{-\alpha}\Omega(\xi')\Psi(|\xi|)(\log|\xi|)^m, \quad \alpha, m \ge 0,$$

where c = 1 or -1.

Here, $\Omega(\xi') = \Omega(\frac{\xi}{|\xi|})$ is a C^{∞} non-negative and non-zero function on the unit sphere S^{n-1} if $n \ge 2$ and $\Omega(\xi') = 1$ if n = 1. By this definition, u(x,1) is a special case of the operator $S_{\alpha,m}(f)$.

On the n-torus T^n , we similarly define the operator

$$\widetilde{S}_{\alpha,m}(g)(x) = \widetilde{K}_{\alpha,m} * g(x)$$

$$= \sum_{j \in \mathbb{Z}^n} c_j \widehat{K_{\alpha,m}}(j) e^{2\pi i j \cdot x},$$

where $g \in L^1(T^n)$ and

$$g(x) \sim \sum_{j \in \mathbb{Z}^n} c_j e^{2\pi i j \cdot x}.$$