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Abstract. For a Gromov-Hausdorff convergent sequence of closed manifolds Mn
i

GH−→X
with Ric ≥−(n−1), diam(Mi)≤ D, and vol(Mi)≥ v > 0, we study the relation be-
tween π1(Mi) and X. It was known before that there is a surjective homomorphism
ϕi : π1(Mi)→π1(X) by the work of Pan-Wei. In this paper, we construct a surjective
homomorphism from the interior of the effective regular set in X back to Mi, that is,
ψi : π1(R◦

ϵ,δ)→π1(Mi). These surjective homomorphisms ϕi and ψi are natural in the
sense that their composition ϕi◦ψi is exactly the homomorphism induced by the inclu-
sion map R◦

ϵ,δ ↪→X.
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1 Introduction

For a Gromov-Hausdorff convergent sequence Mi
GH−→ X with curvature bounds, it is

crucial to understand the relationship between Mi and X. For example, when Mi are
closed n-manifolds with

sec≥−1, diam(Mi)≤D, vol(Mi)≥v>0,

Perelman proved that Mi is homeomorphic to X for all i large [14]. For the context of this

paper, let us consider a convergent sequence of closed n-manifolds Mi
GH−→X with Ricci

curvature lower bounds

Ric≥−(n−1), diam(Mi)≤D, vol(Mi)≥v>0 (1.1)
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Under this weaker condition, one cannot expect X to be homeomorphic to Mi. By the
work of Wei and the author [13], the limit space X is semi-locally simply connected. This
was later generalized to the collapsing case by Wang [16]. As a consequence, there is a
forward surjective homomorphism from π1(Mi) to π1(X).

Theorem 1.1 ([13]). Let Mi be a sequence of closed n-manifolds with (1.1) and Gromov-Hausdorff
converging to a limit space X. Let xi ∈ Mi be a sequence of points converging to x∈X. Then for
all i large, there is a surjective homomorphism

ϕi : π1(Mi,xi)→π1(X,x).

For an element [σi]∈π1(Mi,xi) represented by a loop σi based at xi, its image under
this forward homomorphism ϕi is constructed by drawing a loop σ in X that is sufficiently
close to σi, see [13, 15]. While ϕi is surjective, in general it is not injective even under
the noncollapsing condition. In fact, there could be shorter and shorter non-contractible
loops at xi with length tending to 0, then by construction ϕi sends them to identity. We
will review an example by Otsu [11] in Section 3 regarding this.

From Theorem 1.1, because ϕi may have a kernel, it appears that some elements in
π1(Mi) are lost in the limit X. As the main result of this paper, we show that all elements
in π1(Mi) are still retained in X; more specifically, in the effective regular set Rϵ,δ of
X. In fact, we will construct a backward surjective homomorphism from π1(R◦

ϵ,δ,x) to
π1(Mi,xi), where R◦

ϵ,δ is the interior of Rϵ,δ and x∈X is a regular point. By the regularity
theory developed by Cheeger-Colding [4], R◦

ϵ,δ is a connected topological manifold of
dimension n for all 0<ϵ≤ϵ(n) and δ>0.

Theorem 1.2. Let
(Mi,xi)

GH−→ (X,x)

be a convergent sequence of closed n-manifolds with (1.1), where x is a regular point. Then

(1) for any 0<ϵ<ϵ(n) and sufficiently small 0<δ<δ(ϵ,x), there is a surjective homomorphism

ψδ
i : π1(R◦

ϵ,δ,x)→π1(Mi,xi)

for all i large;

(2) the composition of ψδ
i and ϕi in Theorem 1.1

ϕi◦ψδ
i : π1(R◦

ϵ,δ,x)→π1(X,x)

is exactly the homomorphism ι⋆ induced by the inclusion map ι :R◦
ϵ,δ ↪→X.

The construction of this backward homomorphism ψi is natural and similar to that of ϕi:
namely, by drawing nearby loops. The surjectivity of ψi requires a complete different and
more involved argument than that of ϕi. We remark that ψi is not injective in general. In
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fact, we will review an example by Anderson [1] in Section 3; in this example, both Mi
and X are simply connected but π1(R◦

ϵ,δ) is isomorphic to Z2.
As an application of Theorem 1.1, we show that if the inclusion map R◦

ϵ ↪→X induces
an injective homomorphism ι⋆ :π1(R◦

ϵ ,x)→π1(X,x), then π1(Mi) is isomorphic to π1(X)
for all i large. Note that we are considering the ϵ-regular set in this statement; in other
words, the involvement of δ is dropped.

Theorem 1.3. Let
(Mi,xi)

GH−→ (X,x)

be a convergent sequence of closed n-manifolds with (1.1), where x is a regular point. Suppose
that for some 0<ϵ<ϵ(n), the induced homomorphism

ι⋆ : π1(R◦
ϵ ,x)→π1(X,x)

is injective, then π1(Mi) is isomorphic to π1(X) for all i large. In particular, if R◦
ϵ is simply

connected, then so is Mi.

The work in this paper is motivated by the π1-stability problem:

Question 1.1. Given n,D,v>0, is there a positive constant ϵ(n,D,v)>0 such that if two
closed n-manifolds M1 and M2 satisfy (1.1) and dGH(M1,M2)≤ ϵ, then are π1(M1) and
π1(M2) isomorphic?

As a comparison, if one replaces Ricci curvature in (1.1) by a sectional curvature lower
bound sec≥−1, then M1 and M2 are homeomorphic when they are Gromov-Hausdorff
close; see the works by Grove-Petersen-Wu [10] and Perelman [14].

Question 1.1 is a stronger version of the celebrated finiteness result by Anderson [1]
below. In fact, if Question 1.1 has an affirmative answer, then finiteness would easily
follow by a standard contradicting argument.

Theorem 1.4 ([1]). Given n,D,v>0, there are finitely many isomorphism classes of fundamental
groups among closed n-manifolds with (1.1).

To resolve Question 1.1, it is equivalent to answer:

Question 1.2. For a convergent sequence of closed n-manifolds Mi
GH−→X with (1.1), is it

possible to determine π1(Mi) solely from X?

Theorems 1.2 and 1.3 provide partial answers to Question 1.2.

Remark 1.1. Let us mention other related results regarding Questions 1.1 and 1.2.

(1) When X satisfies a local half-volume lower bound, we have a positive answer; see
[13, Section 3].
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(2) If one considers the equivariant Gromov-Hausdorff convergence of the Riemannian
universal covers, then it holds that π1(Mi,pi) is isometric to the limit group for all
i large ([12, Section 2.3] for details). However, because a subsequence was chosen
to derive equivariant convergence, this result does not provide direct answers to
Question 1.1.

The proof of Theorem 1.2 consists of two steps. The first step is to construct the map ψδ
i

and show that it is well-defined for small δ. The second step is to show its surjectivity.
The proofs relies on several ingredients. The first one is the regularity theory of non-
collapsing Ricci limit spaces developed by Cheeger-Colding [3–5,7]. The second ingredi-
ent is the equivariant convergence under Ricci and volume lower bounds; in particular,
we utilize some of the results by Pan-Rong [12] and Chen-Rong-Xu [6]. Lastly, we use
some of the methods in Pan-Wei’s work [13] on loops and homotopies under Gromov-
Hausdorff convergence; these techniques can be traced back to the work of Borsuk [2]
and Tuschman [15].

2 Preliminaries

2.1 Regularity theory of noncollapsing Ricci limit spaces

Throughout the paper, we always use Ψ(ϵ|n) to represent some nonnegative function
depending on ϵ and n with

lim
ϵ→0

Ψ(ϵ|n)=0.

We may use the same symbol Ψ(ϵ|n) though dependence on ϵ or n may be different.
Given n ∈ N, κ ≥ 0, and v > 0, we denote M(n,−κ,v) the set of all pointed Ricci

limit spaces (X,x) coming from some GH convergent sequence of complete n-manifolds
(Mi,pi) with

Ric≥−(n−1)κ, vol(B1(pi))≥v>0. (2.1)

The regularity theory about these noncollapsing Ricci limit spaces are mainly developed
by Cheeger, Colding, and Naber. Below, we review some of the results that will be used
later. The main references are [3, 5].

Definition 2.1 ([3, 5]). Let ϵ,δ> 0. For a Ricci limit space X ∈M(n,−1,v), we define (ϵ,δ)-
regular set, ϵ-regular set, regular set, and singular set of X as below.

Rϵ,δ ={x∈X | dGH(Br(x),Bn
r (0))≤ϵr for all 0< r≤δ},

Rϵ =
⋃
δ>0

Rϵ,δ,

R=
⋂
ϵ>0

Rϵ =
⋂
ϵ>0

⋃
δ>0

Rϵ,δ.

S=X−R.
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Theorem 2.1 ([5, 7]). Let (Mn
i ,pi)

GH−→ (X,x) be a convergent sequence with (2.1). Then for all
r>0, we have volume convergence

vol(Br(pi))→Hn(Br(x))

as i→∞, where Hn is the n-dimensional Hausdorff measure on X.

Theorem 2.2 ([5, 7]). Let X∈M(n,−δ,v) and x∈X.

(1) If
dGH(B1(x),Bn

1 (0))≤δ,

then
Hn(B1(x))≥ (1−Ψ(δ|n))vol(Bn

1 (0)).

(2) If
Hn(B1(x))≥ (1−δ)vol(Bn

1 (0)),

then
dGH(B1(x),Bn

1 (0))≤Ψ(δ|n).

The following facts follow from Theorems 2.1 and 2.2.

Lemma 2.1. Let X∈M(n,−1,v).
(1) Given ϵ,δ>0, there are ϵ′=Ψ(ϵ|n) and δ′=δ/3 such that Rϵ,δ ⊆R◦

ϵ′,δ′ .
(2) Let A be a compact subset of R. Then for any ϵ>0, there is δ>0 such that A⊆Rϵ,δ.

Proof. We include the proof here for readers’ convenience.

(1) Let x∈Rϵ,δ. By definition, this means

dGH(Br(x),Bn
r (0))≤ϵr

for all 0< r≤δ. By Theorem 2.2 and Bishop-Gromov relative volume comparison,

Hn(Bs(y))≥ (1−Ψ(ϵ|n))vol(Bn
s (0))

holds for all y∈Bδ/3(x) and all 0< s≤δ/3. Applying Theorem 2.2 (2), we see that

dGH(Bs(y),Bn
s (0))≤Ψ(ϵ|n)s,

that is, y∈RΨ(ϵ|n),δ/3 for all y∈Bδ/3(x). Therefore, x∈R◦
ϵ′,δ′ , where ϵ′=Ψ(ϵ|n) and

δ′=δ/3.
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(2) Let ϵ>0. For each x∈A, we pick δ(x)>0 as the largest δ so that

dGH(Br(x),Bn
r (0))≤ϵr

holds for all 0 < r ≤ δ. It suffices to show that δ(x) has a uniform positive lower
bound for all x∈ A. We argue by contradiction. Suppose that there is a sequence
xi ∈ A with δ(xi)→ 0. Then by compactness of A, xi subconverges to some y∈ A,
which is also regular. Therefore, for ϵ′>0, which will be determined later, there is
δ0=δ0(ϵ′,y)>0 such that y∈Rϵ′,δ0 . Thus it follows from Theorem 2.2(1) that

Hn(Bδ0(y))≥ (1−Ψ(ϵ′|n))vol(Bn
δ0
(0)).

By volume convergence,

Hn(Bδ0(xi))≥ (1−2Ψ(ϵ′|n))vol(Bn
δ0
(0))

for i large, thus
dGH(Br(xi),Bn

r (0))≤Ψ′(ϵ′|n)r

for all 0< r≤ δ0. Now we choose ϵ′> 0 so that Ψ′(ϵ′|n)≤ ϵ, then xi ∈Rϵ,δ0 for all i
large. A contradiction to δ(xi)→0. This completes the proof.

Theorem 2.3 ([5]). Let X ∈M(n,−1,v). Then its singular set S has Hausdorff dimension at
most n−2.

Theorem 2.4 ([5]). Let X∈M(n,−1,v) and let A be a closed subset of X with Hn−1(A)= 0.
Then X−A is path connected. Moreover, given any δ>0 and any pair of points x,y∈X−A, a
path σ in X−A between x,y can be chosen that

length(σ)≤ (1+δ)d(x,y).

Theorem 2.5 ([5]). Given dimension n, there is a constant ϵ0(n)> 0 such that the following
holds for all 0<ϵ≤ϵ0(n). Let X∈M(n,−1,v) and x∈X such that

dGH(Bδ(x),Bn
δ (0))≤ϵδ,

where δ>0. Then Br(x) is contractible in B2r(x) for all 0< r≤δ/10.

2.2 Equivariant GH convergence with Ricci and volume lower bounds

In the study of fundamental groups associated to a convergent sequence

(Mi,xi)
GH−→ (X,x)
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with conditions (2.1), it is natural to take the universal covers and their convergence into
account. A powerful tool is the equivariant Gromov-Hausdorff convergence introduced
by Fukaya-Yamaguchi [9]. After passing to a subsequence, we can obtain convergence

(M̃i, x̃i,Γi)
GH−−−→ (Y,y,Γ)yπi

yπ

(Mi,xi)
GH−−−→ (X,x).

(2.2)

Here Γi=π1(Mi,xi) acts isometrically, freely, and discretely on the universal cover (M̃i, x̃i).
This sequence of Γi-actions converges to a limit isometric Γ-action on the limit space Y.
Due to the noncollapsing condition on (Mi,xi), the limit group Γ is a discrete subgroup
of Isom(Y); see Corollary 5.1.

We below state a result by Chen-Rong-Xu [6], which roughly states that if a point z∈Y
is sufficiently regular, then Γ-action cannot fix z.

Theorem 2.6 ([6, Theorem 2.1 and Corollary 2.2]). Given n,v>0, there is a constant ϵ(n,v)>
0 such that the following holds.

In the convergence (2.2) with conditions (2.1), if z∈Y is (ϵ,δ)-regular, where δ> 0, then Γ
acts freely on Bδ/4(z).

We will also need a quantitative result describing the action of any non-trivial sub-
group of Isom(Y), which is proved in a joint work by Rong and the author [12]. Given a
subgroup H≤ Isom(Y), we write its displacement on a 1-ball by

D1,y(H)=sup{d(hz,z)|z∈B1(y),h∈H}.

Theorem 2.7 ([12, Theorem 0.8]). Given n,v> 0, there is a constant δ(n,v)> 0 such that for
any space (Y,y)∈M(n,−1,v) and any nontrivial subgroup of H of Isom(X), D1,y(H)≥δ(n,v)
holds.

3 Illustrative examples

In this short section, we briefly review some relevant examples of convergent sequences

Mi
GH→ X with conditions (1.1) by Otsu [11] and Anderson [1]. In particular, we shall see

that in general the homomorphisms ϕi in Theorem 1.1 and ψi in Theorem 1.2 are not
injective.

Example 3.1. Otsu [11] constructed a sequence of doubly warped metric products on
M=Sp+1×Sq, where p≥2 and q≥2:

[0,bi]× fi S
p×hi S

q, gi =dr2+ f 2
i (r)ds2

p+h2
i (r)ds2

q.
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such that
Ric(gi)≥n−1, diam(gi)=bi →π, vol(gi)≥v>0.

At s=0 or bi, fi and gi satisfies

fi(s)=0, f ′i (s)=1, hi(s)>0, lim
i→∞

hi(s)→0 h′i(s)=0.

As i→∞, (M,gi) converges to Susp(Sp×Sq), a suspension over Sp×Sq.
Since the Sq-factor is always the round sphere in the construction, we can take the

antipodal Z2-action on the Sq-factor and consider the quotient (Ni, ḡi)=(M,gi)/Z2. The
resulting (Ni, ḡi) is Riemannian because the Z2-action is isometric and free on (M,gi).
Then as i→∞, Ni converges to X=Susp(Sp×RPq). In terms of fundamental groups, we
have

π1(Ni)=Z2, π1(X)= id.

The forward homomorphism ϕi : π1(Ni)→π1(X) has kernel Z2. The limit space X has
two singular points as the vertices of the suspension. For small ϵ and δ>0, R◦

ϵ,δ is home-
omorphic to (0,1)×Sp×RPq. In particular, π1(R◦

ϵ,δ)=Z2.

Example 3.2. Modifying the Eguchi-Hanson metric [8] on TS2, the tangent bundle of S2,
Anderson [1] constructed a sequence of metrics gi on M4, the double of the disk bundle
in TS2, with

Ric(gi)≥0, diam(gi)≤D, vol(gi)≥v>0.

M is diffeomorphic to S2×S2. Recall that the Eguchi-Hanson metric, written as h, on
TS2 is Ricci-flat and has Euclidean volume growth. It has a unique asymptotic cone as
C(RP3)=R4/Z2.

Let Z be the zero-section in TS2 and let Bi =T1(Z ,r−2
i h) be the tubular neighborhood

of Z of radius 1 with respect to the metric r−2
i h, where ri → ∞. Modifying the metric

around ∂Bi and then doubling it, one obtains the desired metric gi on M. As i → ∞,
(M,gi) converges to X=Susp(RP3), a suspension over RP3. X has two singular points
as the vertices. For small ϵ,δ>0, R◦

ϵ,δ is homeomorphic to (0,1)×RP3. Hence

π1(M)=π1(X)= id, π1(R◦
ϵ,δ)=Z2.

The backward homomorphism ψi : π1(R◦
ϵ,δ)→π1(M) has kernel Z2.

4 Construction of ψi

In this section, we always assume that Mi is a sequence of closed n-manifolds with (1.1)
that Gromov-Hausdorff converges to X. Let 0< ϵ< ϵ0(n)/2, where ϵ0(n) is the constant
in Theorem 2.5. Let x be a regular point of X and xi in Mi converging to x. By the proof
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of Lemma 2.1(1), there is δ>0 such that Bδ(x)⊆Rϵ,δ, thus x∈R◦
ϵ,δ. We may further shrink

this δ later. The main goal of this section is to construct the group homomorphisms

ψδ
i : π1(R◦

ϵ,δ,x)→π1(Mi,xi)

for all i large.

Lemma 4.1. Given any 0<ϵ<ϵ0(n)/2 and δ>0, the following holds for all large i.
Let zi be a point in Mi that is δ/30-close to a point z∈R◦

ϵ,δ. Then any loop in Bδ/30(zi) is
contractible in Bδ(zi).

Proof. We set
ηi =dGH(Mi,X)→0.

Then for each z∈X, we can choose a point wi∈Mi that is ηi-close to z. By the convergence

Mi
GH−→X and the compactness of X, there is i0 large such that

dGH(Bδ(wi),Bδ(z))≤
ϵ0(n)

2
δ

holds for all z∈X, all wi∈Mi that is ηi-close to z, and all i≥ i0, where ϵ0(n) is the constant
in Theorem 2.5. Now fixing a point z∈R◦

ϵ,δ, we have

dGH(Bδ(z),Bn
δ (0))≤ϵδ.

Thus by triangle inequality,

dGH(Bδ(wi),Bn
δ (0))≤ (ϵ+ϵ0(n)/2)δ<ϵ0(n)δ.

Then by Theorem 2.5, every loop in Bδ/10(wi) is contractible in Bδ/5(wi). Let zi be any
point in Mi that is δ/30-close to z. We have

d(zi,wi)≤d(zi,z)+d(z,wi)≤δ/30+ηi.

Thus when i is large with ηi < δ/30, we see that Bδ/30(zi)⊆ Bδ/10(wi). Therefore, every
loop in Bδ/30(zi) is contractible in Bδ/5(wi)⊆Bδ(zi).

With Lemma 4.1, we follow a similar construction in [13, Lemma 2.4] (also see [15])
to construct nearby loops and homotopies on Mi from the ones on R◦

ϵ,δ. For two com-
pact length metric spaces (X1,x1) and (X2,x2) that are close in the Gromov-Hausdorff
distance, we say that two curves σj : [0,1]→Xj, where j=1,2, are ϵ-close, if

d(σ1(t),σ2(t))≤ϵ

for all t∈ [0,1]; in other words, σ1(t)∈X1 is ϵ Gromov-Hausdorff close to σ2(t)∈X2 for all
t∈ [0,1].
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Lemma 4.2. We write ηi =dGH(Mi,X)→0. Then for sufficiently large i, the followings hold.

(1) For any loop σ : [0,1]→R◦
ϵ,δ, there is a loop σi in Mi that is 5ηi-close to σ.

(2) Let σi and σ′
i be loops in Mi that are both δ/300-close to a loop σ in R◦

ϵ,δ, then σi and σ′
i are

free homotopic in Mi.

(3) Let σ and τ be two loops in R◦
ϵ,δ. Let σi and τi be loops in Mi that is δ/300-close to σ and

τ, respectively. If σ and τ are free homotopic in R◦
ϵ,δ, then σi and τi are free homotopic in

Mi.

Proof. (1) The construction of σi is the same as the proof of [13, Lemma 2.4 (1)]. Namely,
using the uniform continuity of σ, we choose a suitable partition of [0,1]. Then for each
intermediate point in the partition, we can pick nearby points in Mi and then join them
by minimal geodesics. (2) By uniform continuity of σ, we choose l>0 such that

d(σ(t),σ(t′))≤δ/300

for all t,t′ ∈ [0,1] with |t−t′| ≤ l. Let {t0 = 0,t1,...,tj,...,tN = 1} be a partition of [0,1] with
|tj+1+tj|≤ l for all j. By triangle inequality, it is clear that

d(σi(tj),σi(tj+1))≤3·δ/300, d(σ′
i (tj),σ′

i (tj+1))≤3·δ/300.

Let ci,j be the loop obtained by joining σi|[tj,tj+1], a minimal geodesic from σi(tj+1) to
σ′

i (tj+1), the inverse of σ′
i |[tj,tj+1], and lastly a minimal geodesic from σ′

i (tj) to σi(tj). Since

d(σi(tj),σ′
i (tj))≤2·δ/300

for all i. By construction, one can verify that

image of ci,j ⊆Bδ/30(σi(tj)).

Because σi(tj) is δ/300-close to σ(tj)∈R◦
ϵ,δ, by Lemma 4.1, ci,j is contractible in Mi for all

j. Thus σi and σ′
i are free homotopic. (3) Let H : S1×[0,1]→R◦

ϵ,δ be a homotopy between
σ and τ. We follow the method in [13, Lemma 2.4] to construct a homotopy Hi between
σi and τi as below. By the uniform continuity of H, we can choose a finite triangular
decomposition Σ of S1×[0,1] so that

diam(H(∆))≤δ/300

for each triangle ∆ of Σ. For any vertex v of Σ, if v is on the boundary of S1×[0,1], then
Hi(v) is naturally defined as a point on σi or τi; if not, then we define Hi(v) as a point
in Mi that is ηi-close to H(v). Next, we define Hi on every edge of Σ: for an edge that
is on the boundary of S1×[0,1], Hi on this edge is naturally defined as part of σi or τi;
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for an edge not on the boundary with vertices v and w, we map it to a minimal geodesic
between Hi(v) and Hi(w). If ηi ≤δ/300, then by construction, every triangle ∆ satisfies

Hi(∂∆)⊆Bδ/30(Hi(v)),

where v is a vertex of ∆. Since Hi(v) is δ/300-close to H(v)∈R◦
ϵ,δ, we can apply Lemma

4.1 to contract the loop Hi(∆). Applying this to all the triangles of Σ, we result in the
desired homotopy between σi and τi.

Now we construct the backward homomorphism ψδ
i .

Definition 4.1. Let [σ]∈π1(R◦
ϵ,δ,x) represented by a loop σ based at x in R◦

ϵ,δ. For i large that
fulfills Lemma 4.2, we draw a loop σi in Mi based at xi that is δ/300-close to σ. We define

ψδ
i : π1(R◦

ϵ,δ,x)→π1(Mi,xi),

[σ] 7→ [σi].

Theorem 4.1. The above constructed ψδ
i is well-defined and is a group homomorphism for all i

large.

Proof. By Lemma 4.2 (2), ψδ
i [σ] = [σi] is independent of the choice of σi. It also follows

from Lemma 4.2 (3) that the definition is independent of the choice of σ.
It is straightforward to check that ψδ

i is a group homomorphism. In fact, let σ and τ
be two loops in R◦

ϵ,δ based at x, and let σi and τi be loops in Mi that is δ/300-close to σ
and τ, respectively. Since the the product σi ·τi is clearly δ/300-close to σ·τ, by definition,
we have

ψδ
i [σ]·ψδ

i [τ]= [σi]·[τi]= [σi ·τi]=ψδ
i [σ·τ]=ψδ

i ([σ]·[τ]).

For 0<ϵ≤ϵ′ and 0<δ′≤δ, we have inclusion

R◦
ϵ,δ ⊆R◦

ϵ′,δ′ .

For both R◦
ϵ,δ and R◦

ϵ′,δ′ , we have backward homomorphisms defined; they are indeed
related by the inclusion map, as stated in Lemma 5.3 below. Due to the dependence on ϵ,
we will write ψϵ,δ

i instead of ψδ
i for clarity.

Lemma 4.3. Let 0 < ϵ ≤ ϵ′ < ϵ0(n)/2 and 0 < δ′ ≤ δ. Suppose that i is large such that both
homomorphisms

ψϵ,δ
i : π1(R◦

ϵ,δ,x)→π1(Mi,xi), ψϵ′,δ′
i : π1(R◦

ϵ′,δ′ ,x)→π1(Mi,xi)

are defined. Then ψϵ,δ
i coincides with the composition

π1(R◦
ϵ,δ,x) ι⋆−→π1(R◦

ϵ′,δ′ ,x)
ψϵ′ ,δ′

i−→π1(Mi,xi),

where ι is the inclusion map R◦
ϵ,δ ↪→R◦

ϵ′,δ′ .
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Proof. Let [σ]∈π1(R◦
ϵ,δ,x), where σ is a loop in R◦

ϵ,δ based at x. Then ι◦σ naturally repre-
sents an element of π1(R◦

ϵ′,δ′ ,x). Let σi be a loop in Mi based at xi that is δ′/300-close to
ι◦σ. According to Definition 4.1, we have

ψϵ′,δ′
i ◦ ι⋆[σ]=ψϵ′,δ′

i [ι◦σ]= [σi].

Since δ′≤δ, the loop σi is also δ/300-close to ι◦σ=σ in R◦
ϵ,δ. Therefore,

ψϵ,δ
i [σ]= [σi]=ψϵ′,δ′

i ◦ ι⋆[σ].

5 Surjectivity of ψi

The main goal of this section is to prove Theorem 1.2. The proof of surjectivity of ψδ
i is

a contradicting argument and we shall apply equivariant GH convergence to the contra-
dicting sequence.

Before starting the proof of Theorem 1.2, we prove some results about the equivariant
GH convergence.

Lemma 5.1. Let us consider the diagram (2.2) with conditions (2.1). Suppose that x ∈R◦
ϵ,δ,

where 0< ϵ≤ ϵ(n) and 0< δ≤ δ(n) are sufficiently small. Then there is a constant l(n,δ)> 0
such that any nontrivial element in π1(Mi,xi) has length at least l(n,δ), where i is large.

Proof. The proof is a localized version of an argument by Anderson [1].
Let gi∈π1(Mi,xi) with d(gi x̃i, x̃i)=li>0. We shall prove a lower bound for liminfli :=l.

Let Fi be the Dirichlet domain of M̃i centered at x̃i. Since

gi(Fi∩Bδ(x̃i))⊆Bli+δ(x̃i), gi(Fi∩Bδ(x̃i))∩(Fi∩Bδ(x̃i))=∅,

we have volume estimate

2vol(Bδ(xi))=vol(Fi∩Bδ(x̃i))+vol(gi(Fi∩Bδ(x̃i)))

≤vol(Bli+δ(x̃i))

≤v(n,−1,li+δ),

where v(n,−κ,r) means the volume of an r-ball in the n-dimensional space form of con-
stant curvature −κ. By volume convergence, as i→∞, we have

vol(Bδ(xi))→Hn(Bδ(x))
≥ (1−Ψ(ϵ|n))·v(n,0,δ)
≥ (1−Ψ(ϵ|n))·(1−Ψ(δ|n))·v(n,−1,δ).

These lead to
v(n,−1,li+δ)

v(n,−1,δ)
≥1.9(1−Ψ(ϵ,δ|n))>1.5.

for all i large, which gives a universal lower bound l(n,δ) for liminfli.
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Corollary 5.1. In the diagram (2.2) with conditions (2.1), the limit group Γ is discrete.

Proof. Let z∈X be a regular point. We choose small 0<ϵ<ϵ(n) and δ>0 such that z∈R◦
ϵ,δ.

Let zi ∈ Mi converging to z and let z̃i ∈ M̃i be a lift of zi. By Lemma 5.1, the orbit Γi · z̃i is
l(n,δ)-discrete. Passing this to the limit, we see that Γ is a discrete group.

Lemma 5.2. Let (Ni,xi)∈M(n,−1,v) with an isometric Γi-action on each Ni. Suppose that the
sequence converges

(Ni,xi,Γi)
GH−→ (Y,y,G)

and the limit group G is discrete. Let g∈G be an element of finite order k and let γi∈Γi converging
to g. Then
(1) γi has order k for all i large;

(2) ⟨γi⟩
GH−→⟨g⟩, where ⟨·⟩ means the subgroup generated by that element.

Proof. (1) First note that γk
i

GH−→gk=e as i→∞. We claim that ⟨γk
i ⟩

GH−→{e}. In fact, let H be
the limit of ⟨γk

i ⟩ and suppose that H has a non-identity element h. We pick a point z∈Y
with d(hz,z)>0. Since d(γk

i zi,zi)→0, where zi∈Mi converging to z, for any 0<l<d(hz,z),
we can find a sequence mi such that

d((γk
i )

mi zi,zi)→ l.

The sequence (γk
i )

mi would converge to an element of H with displacement l at z. Because
l∈(0,d(hz,z)) is arbitrary, we result in a contradiction to the discreteness of G. This proves
the claim.

By this claim, we have D1,xi(⟨γk
i ⟩)→0. On the other hand, by Theorem 2.7

D1,xi(⟨γ
k
i ⟩)≥δ(n,v)>0

if ⟨γk
i ⟩ is nontrivial. We conclude that γk

i =e. It is clear that γi cannot have order m strictly

less than k; otherwise γm
i

GH−→ e ̸= gm. We complete the proof that γi has order k. (2) is a
direct consequence of (1).

Let γ be an isometry of Y. We write

Fix(γ)={z∈Y|γz= z}

as the fixed point set of γ.

Proposition 5.1. In the convergence (2.2) with conditions (1.1), Fix(γ) has Hausdorff dimension
at most n−2 for all non-identity γ∈Γ.
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Proof. Suppose the contrary dimH(Fix(γ))> n−2. Then Hl(Fix(γ))> 0 for some real
number n−2< l<n. Let S be the singular set of Y. By Theorem 2.3, C :=Fix(γ)−S also
satisfies Hl(C)>0. Let z be an l-density point of C, that is, z∈R∩Fix(γ) such that

limsup
r→0

Hl
∞(C∩Br(z))

ωlrl ≥2−l .

Let rj →∞ be a sequence that realizes the above limsup and let

(rjY,z) GH−→ (CzY=Rn,v)

be a corresponding tangent cone at z. With respect to this convergent sequence, γ sub-
converges to a limit isometry g of Rn, and C subconverges to a closed subset Cz ⊆Rn. It
is clear that by construction, g fixes every point in Cz. By a standard covering argument,
Cz∩B1(v), and thus Fix(g)∩B1(v), have positive l-dimensional Hausdorff measure.

The limit isometry g, which an isometry of Rn, satisfies dimH(Fix(g))> n−2. Since
g ∈ O(n), by linear algebra we conclude that g must be a reflection of Rn that fixes a
hyperplane. In particular, g has order 2. By Lemma 5.2 (1), γ has order 2 as well. Let
γi ∈ Γi that converges to γ and let Mi = M̃i/⟨γi⟩. Lemma 5.2 allows us to consider the
convergence

(M̃i,zi,⟨γi⟩)
GH−−−→ (Y,z,⟨γ⟩)yπi

yπ

(Mi, z̄i)
GH−−−→ (Y=Y/⟨γ⟩, z̄),

(rjY,z,⟨γ⟩) GH−−−→ (Rn,v,⟨g⟩)yπi

yπ

(rjY, z̄) GH−−−→ (Rn/⟨g⟩,v̄).

(5.1)

Because g is a reflection in Rn, the quotient Rn/⟨g⟩ is isometric to the Euclidean halfspace
Hn ={(a1,...,an)|an ≥0}. In particular, Hn appears as a tangent cone of a non-collapsing
Ricci limit space Y at ȳ. This is a contradiction to Theorem 2.3 and thus completes the
proof.

If one seeks a weaker statement of Theorem 1.2 that requires ϵ(n,v) instead of ϵ(n),
there is an alternative and shorter proof of Theorem 5.1 based on a result by Chen-Rong-
Xu [6], that is, Theorem 2.6 which we have recalled in Section 2. We also include this
short proof here since it may have some independent interest.

Proof. We shall show that Fix(γ)⊆ S ; then the Hausdorff dimension estimate follows
from Theorem 2.3. In fact, let z∈Y be a regular point and let 0<ϵ<ϵ(n,v), the constant in
Theorem 2.6. Then there is some δ>0 such that z is (ϵ,δ)-regular. Applying Theorem 2.6
to the first diagram of (5.1), we conclude that ⟨γ⟩-action, and thus γ, does not fix z.

We are in a position to prove Theorem 1.2. For reader’s convenience, we restate the
surjectivity part in Theorem 1.2 as below.
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Theorem 5.1. Let ψδ
i : π1(R◦

ϵ,δ,x)→ π1(Mi,xi) be the group homomorphism constructed in
Definition 4.1. When δ is sufficiently small, ψδ

i is surjective for all i large.

Proof. We argue by contradiction. Suppose that for each 1/j, where j∈N, we can find
some i(j)≥ i and some element gi(j)∈π1(Mi(j),xi(j)) such that gi(j) is not in the image of

ψ
1/j
i(j). Since diam(Mi)≤D, π1(Mi,xi) can be generated by elements of length at most 2D.

Together with Lemma 5.1, without loss of generality, we will assume that each gi(j) has
length between l(n,δ) and 2D at xi(j).

For this sequence i(j), after passing to a subsequence if necessary, we consider the
equivariant Gromov-Hausdorff convergence:

(M̃i(j), x̃i(j),Γi(j),gi(j))
GH−−−→ (Y,y,Γ,g)yπi

yπ

(Mi(j),xi(j))
GH−−−→ (X,x).

Because x is regular, so is y. Under the isometry g, gy is regular as well with d(gy,y)∈
[l(n,δ),2D]. By Lemma 5.1, the points y and gy are not fixed by any γ∈Γ−{e} because
they are lifts of x∈R◦

ϵ,δ. Let

C=(Y−R◦
ϵ(Y))∪

 ⋃
γ∈Γ−{e}

Fix(γ)

.

By Theorem 2.3, C has Hausdorff dimension at most n−2.
We claim that C is closed. It suffices to show that ∪γ∈Γ−{e}Fix(γ) is closed. In fact,

let zi be a convergent sequence ∪γ∈Γ−{e}Fix(γ) with limit z. Each zi is fixed by some
element γi ∈Γ−{e}. Because each γi, where i large, moves z at most by distance 1, γi is
precompact in Γ. By the discreteness of Γ, we see that all γi are the same after passing to
a subsequence: γi = g∈Γ−{e}. Hence

gz= lim
i→∞

gzi = lim
i→∞

zi = z.

This shows that z∈∪γ∈Γ−{e}Fix(γ). As a result, ∪γ∈Γ−{e}Fix(γ) is closed.
We note that y,gy∈Y−C because they are in π−1(x) and thus not fixed by any γ∈

Γ−{e} according to Lemma 5.1. As a result of Theorem 2.4, we can connect y and gy by a
path σ that is contained in Y−C. In particular, σ is in the regular set and avoids any point
that is fixed by some nontrivial element of Γ. Because the image of σ is compact and C is
closed. The distance δ1=d(σ,C) is positive. Let

T :=Tδ1/2(σ)={z∈Y | d(z,σ)≤δ1/2}
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be the closed tubular neighborhood of σ with radius δ1/2. By construction, T does not
intersect Fix(γ) for all non-identity γ∈Γ. Because T is compact,

δ2 := inf
a∈T,γ∈Γ−{e}

d(a,γa)

is positive. Setting δ3=min{δ1/2,δ2/4}, we claim that Bδ3(z) is isometric to Bδ3(π(z))⊆X
for all z∈σ, where π :Y→X=Y/Γ is the quotient map. In fact, first note that for any two
points a,b∈Bδ3(z), we clearly have a,b∈T. Then for any other orbit point a′∈Γa−{a}, it
follows from triangle inequality that

d(a′,b)≥d(a′,a)−d(a,b)≥δ2−2δ3≥δ2/2>d(a,b).

This verifies the claim: for all a,b∈Bδ3(z),

dY(a,b)=dY(Γa,Γb)=dX(π(a),π(b)).

We choose a small ϵ1 > 0 such that Ψ(ϵ1|n)≤ ϵ, where Ψ is the function in Lemma
2.1(1). With this ϵ1, by Lemma 2.1(2), there is δ4>0 such that

σ⊆Rϵ1,δ4(Y).

Let δ5 :=min{δ3,δ4}>0. Since Bδ5(z) is isometric to Bδ5(π(z)) for all z∈σ, together with
Lemma 2.1 (1), we conclude that

σ :=π(σ)⊆Rϵ1,δ5(X)⊆ IntRϵ,δ5/3.

Now we go back to the sequence of manifolds. Along M̃i(j), let σi(j) be a sequence of
paths from x̃i(j) to gi(j) x̃i(j) that converges uniformly to σ. Then its projection πi(j)(σi(j))=:
σi(j) is a loop that represents gi(j) and uniformly converges to a loop π(σ) in X as j→∞.
By the construction in Definition 4.1, when j is large we have

ψδ5/3
i(j) : π1(IntRϵ,δ5/3,x)→π1(Mi,xi) with ψδ5/3

i(j) [σi(j)]= gi(j).

Applying Lemma 4.3 with ϵ=ϵ′, we obtain

gi(j)=ψδ5/3
i(j) [σ]=ψ

1/j
i(j)◦ ι⋆[σ],

where ι is the inclusion map IntRϵ,δ5/3 ↪→ IntRϵ,1/j. In particular, gi(j) is in the image of

ψ
1/j
i(j). This contradicts with our choice in the beginning that gi(j) is not in the image of ψ

1/j
i(j)

and thus completes the proof.

With Theorems 4.1 and 5.1, now we complete the proof of Theorem 1.2 by Lemma 5.3
below.
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Lemma 5.3. Let

ϕi : π1(Mi,xi)→π1(X,x), ψδ
i : π1(R◦

ϵ,δ,x)→π1(Mi,xi)

be the surjective homomorphisms in Theorems 1.1 and 5.1, respectively. Then

ϕi◦ψδ
i : π1(R◦

ϵ,δ,x)→π1(X,x)

coincides with ι⋆ for all i large, where ι :R◦
ϵ,δ ↪→X is the inclusion map.

Proof. Because X is semi-locally simply connected [13], there is δ0>0 such that every loop
contained in a δ0-ball of X is contractible in X. We set

δ1=min{δ0/20,δ/300}.

We recall that the forward homomorphism ϕi can be constructed as follows ([15] or
[13] for details). When i is large such that dGH(Mi,X)≤ δ1, for any loop σi in Mi based at
xi, we can draw a loop σ in X based at x such that σ is 5δ1-close to σi. Then one can define
the desired ϕi by sending [σi] to [σ]. The choice of δ0 assures that ϕi is well-defined and a
surjective homomorphism.

Now let [σ]∈π1(R◦
ϵ,δ,x) represented by a loop σ based at x in R◦

ϵ,δ. When i is large,
let σi be a loop based at xi ∈Mi that is δ1-close to σ. By the constructions of ϕi and ψδ

i , we
have

ϕi◦ψδ
i [σ]=ϕi[σi]= [σ]∈π1(X,x).

Next, we prove Theorem 1.3.

Proof of Theorem 1.3. We choose a sufficiently small δ> 0 so that we can apply Theorem
1.2 to construct surjective group homomorphisms

ψδ
i : π1(R◦

ϵ,δ,x)→π1(Mi,xi)

for all i large. If the inclusion map ιδ :R◦
ϵ,δ ↪→X induces an injective homomorphism

ιδ⋆ : π1(R◦
ϵ,δ,x)→π1(X,x),

then by Theorem 1.2 (2), the composition

π1(R◦
ϵ,δ,x)

ψδ
i−→π1(Mi,xi)

ϕi−→π1(X,x)

is an isomorphism. Together with the surjectivity of ψδ
i and ϕi, we clearly have isomor-

phism π1(X)≃π1(Mi). In general, if ιδ⋆ is not injective, we shall analyze its kernel. We
claim that

kerιδ⋆=kerψδ
i .
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If this claim holds, then

π1(Mi,xi)=
π1(R◦

ϵ,δ,x)

kerψδ
i

=
π1(R◦

ϵ,δ,x)
kerιδ⋆

=π1(X,x).

One side of the inclusion kerψδ
i ⊆kerιδ⋆ is clear due to Theorem 1.2 (2). It remains to prove

the other direction. Let us consider a composition of inclusion maps ι◦ j= ιδ:

R◦
ϵ,δ

j
↪→R◦

ϵ

ι
↪→X.

They induce

π1(R◦
ϵ,δ,x)

j⋆−→π1(R◦
ϵ ,x) ι⋆−→π1(X,x)

with ι⋆◦j⋆=ιδ⋆ being surjective. By the assumption that ι⋆ is injective, ι⋆ is an isomorphism
and

kerιδ⋆=ker j⋆.

Let [σ] ∈ ker j⋆ represented by a loop σ at x in R◦
ϵ,δ. Then σ is contractible in R◦

ϵ . Let
H : [0,1]2→R◦

ϵ be a nullhomotopy of σ. By Lemma 2.1 (1,2), there are ϵ′=Ψ(ϵ|n)>ϵ and
0<δ′<δ such that

H([0,1]2)⊆R◦
ϵ′,δ′ .

When i is large, we draw a loop σi based at xi ∈ Mi that is δ′/300-close to σ. It follows
from Lemma 4.2 (3) that σi is contractible in Mi. By the construction of

ψϵ′,δ′
i : π1(R◦

ϵ′,δ′ ,x)→π1(Mi,xi)

and Lemma 5.3, we have

ψϵ,δ
i [σ]=ψϵ′,δ′

i [σ]= [σi]= id∈π1(Mi,xi).

This shows that
kerψϵ,δ

i ⊇ker j⋆=kerιδ⋆

and hence completes the proof.
When R◦

ϵ is simply connected, because ι⋆ is an isomorphism as shown above, X is
also simply connected. Consequently, π1(Mi)≃π1(X) is simply connected.
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