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Abstract. For a Gromov-Hausdorff convergent sequence of closed manifolds M}’ Sl x
with Ric > —(n—1), diam(M;) < D, and vol(M;) > v > 0, we study the relation be-
tween 711 (M;) and X. It was known before that there is a surjective homomorphism
¢i: 11 (M;) — 711(X) by the work of Pan-Wei. In this paper, we construct a surjective
homomorphism from the interior of the effective regular set in X back to M;, that is,
$i: 1 (R 5) — m1(M;). These surjective homomorphisms ¢; and ¢; are natural in the
sense that their composition ¢;o1; is exactly the homomorphism induced by the inclu-
sionmap R¢ ; — X.
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1 Introduction

For a Gromov-Hausdorff convergent sequence M; S X with curvature bounds, it is
crucial to understand the relationship between M; and X. For example, when M; are
closed n-manifolds with

sec>—1, diam(M;) <D, vol(M;) >v>0,

Perelman proved that M; is homeomorphic to X for all i large [14]. For the context of this

paper, let us consider a convergent sequence of closed n-manifolds M; I X with Ricci
curvature lower bounds

Ric>—(n—1), diam(M;)<D,  vol(M;)>0v>0 (1.1)
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Under this weaker condition, one cannot expect X to be homeomorphic to M;. By the
work of Wei and the author [13], the limit space X is semi-locally simply connected. This
was later generalized to the collapsing case by Wang [16]. As a consequence, there is a
forward surjective homomorphism from 711 (M;) to 11 (X).

Theorem 1.1 ([13]). Let M; be a sequence of closed n-manifolds with (1.1) and Gromov-Hausdorff
converging to a limit space X. Let x; € M; be a sequence of points converging to x € X. Then for
all i large, there is a surjective homomorphism

¢t (M, x;) — i (X, x).

For an element [0;] € 711 (M, x;) represented by a loop o; based at x;, its image under
this forward homomorphism ¢; is constructed by drawing a loop ¢ in X that is sufficiently
close to oj, see [13,15]. While ¢; is surjective, in general it is not injective even under
the noncollapsing condition. In fact, there could be shorter and shorter non-contractible
loops at x; with length tending to 0, then by construction ¢; sends them to identity. We
will review an example by Otsu [11] in Section 3 regarding this.

From Theorem 1.1, because ¢; may have a kernel, it appears that some elements in
711 (M;) are lost in the limit X. As the main result of this paper, we show that all elements
in 711(M;) are still retained in X; more specifically, in the effective regular set R¢s of
X. In fact, we will construct a backward surjective homomorphism from 771 (R¢ 5,x) to
71 (M;,x;), where R ; is the interior of R, s and x € X is a regular point. By the regularity
theory developed b}; Cheeger-Colding [4], R¢; is a connected topological manifold of
dimension 7 for all 0 <e <e(n) and 6 > 0.

Theorem 1.2. Let
(M;,x;) CH, (X,x)

be a convergent sequence of closed n-manifolds with (1.1), where x is a reqular point. Then
(1) forany 0<e<e(n) and sufficiently small 0<5<5(e,x), there is a surjective homomorphism
g7 11 (RE %) — 101 (M, i)
for all i large;

(2) the composition of ¢ and ¢; in Theorem 1.1
4)iolp? sl (Rglé,x) — 7T (X,x)
is exactly the homomorphism 1, induced by the inclusion map 1:R¢ ;— X.

The construction of this backward homomorphism ¢; is natural and similar to that of ¢;:
namely, by drawing nearby loops. The surjectivity of ¢; requires a complete different and
more involved argument than that of ¢;. We remark that ¢; is not injective in general. In
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fact, we will review an example by Anderson [1] in Section 3; in this example, both M;
and X are simply connected but 711 (R¢ 5) is isomorphic to Z,.

As an application of Theorem 1.1, we show that if the inclusion map R¢ < X induces
an injective homomorphism ¢, : 771 (R2,x) — 111 (X, x), then 711 (M;) is isomorphic to 7t (X)
for all i large. Note that we are considering the e-regular set in this statement; in other
words, the involvement of ¢ is dropped.

Theorem 1.3. Let
(M;,x;) CH, (X,x)

be a convergent sequence of closed n-manifolds with (1.1), where x is a regular point. Suppose
that for some 0 < e < e(n), the induced homomorphism

Le: 1 (RE,x) — mp (X, x)

is injective, then 1t1(M;) is isomorphic to 1t1(X) for all i large. In particular, if Rg is simply
connected, then so is M;.

The work in this paper is motivated by the 71;-stability problem:

Question 1.1. Given 1n,D,v >0, is there a positive constant €(n,D,v) >0 such that if two
closed n-manifolds M; and M, satisfy (1.1) and dgy(M1,M;) <e, then are 711 (M;) and
711 (M) isomorphic?

As a comparison, if one replaces Ricci curvature in (1.1) by a sectional curvature lower
bound sec > —1, then M; and M, are homeomorphic when they are Gromov-Hausdorff
close; see the works by Grove-Petersen-Wu [10] and Perelman [14].

Question 1.1 is a stronger version of the celebrated finiteness result by Anderson [1]
below. In fact, if Question 1.1 has an affirmative answer, then finiteness would easily
follow by a standard contradicting argument.

Theorem 1.4 ([1]). Given n,D,v>0, there are finitely many isomorphism classes of fundamental
groups among closed n-manifolds with (1.1).

To resolve Question 1.1, it is equivalent to answer:

Question 1.2. For a convergent sequence of closed n-manifolds M; I X with (1.1), is it
possible to determine 71 (M;) solely from X?

Theorems 1.2 and 1.3 provide partial answers to Question 1.2.
Remark 1.1. Let us mention other related results regarding Questions 1.1 and 1.2.

(1) When X satisfies a local half-volume lower bound, we have a positive answer; see
[13, Section 3].
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(2) If one considers the equivariant Gromov-Hausdorff convergence of the Riemannian
universal covers, then it holds that 7r1 (M;, p;) is isometric to the limit group for all
i large ([12, Section 2.3] for details). However, because a subsequence was chosen
to derive equivariant convergence, this result does not provide direct answers to
Question 1.1.

The proof of Theorem 1.2 consists of two steps. The first step is to construct the map ¢
and show that it is well-defined for small §. The second step is to show its surjectivity.
The proofs relies on several ingredients. The first one is the regularity theory of non-
collapsing Ricci limit spaces developed by Cheeger-Colding [3-5,7]. The second ingredi-
ent is the equivariant convergence under Ricci and volume lower bounds; in particular,
we utilize some of the results by Pan-Rong [12] and Chen-Rong-Xu [6]. Lastly, we use
some of the methods in Pan-Wei’s work [13] on loops and homotopies under Gromov-
Hausdorff convergence; these techniques can be traced back to the work of Borsuk [2]
and Tuschman [15].

2 Preliminaries

2.1 Regularity theory of noncollapsing Ricci limit spaces

Throughout the paper, we always use ¥(e|n) to represent some nonnegative function
depending on € and n with
lim¥ (e|n)=0.
e—0
We may use the same symbol ¥ (e|n) though dependence on € or n may be different.
Given n € N, ¥« >0, and v > 0, we denote M (n,—x,v) the set of all pointed Ricci
limit spaces (X,x) coming from some GH convergent sequence of complete n-manifolds
(M;,pi) with
Ric>—(n—1)kx,  vol(Bi(p;))>0v>0. (2.1)

The regularity theory about these noncollapsing Ricci limit spaces are mainly developed
by Cheeger, Colding, and Naber. Below, we review some of the results that will be used
later. The main references are [3,5].

Definition 2.1 ([3,5]). Let €,6 >0. For a Ricci limit space X € M(n,—1,v), we define (€,9)-
reqular set, e-reqular set, reqular set, and singular set of X as below.

Res={xeX |dcy(B:(x),B}(0)) <er forall 0<r<4},

Re = U Re,&z
6>0
R=Re= N Res.
e>0 €>06>0

S=X-R.
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Theorem 2.1 ([5,7]). Let (M}, p;) SN (X,x) be a convergent sequence with (2.1). Then for all

r >0, we have volume convergence

vol(B,(p:)) = H"(B(x))
as i — oo, where H" is the n-dimensional Hausdorff measure on X.

Theorem 2.2 ([5,7]). Let X€ M(n,—6,v) and x € X.

(1) If
der(B1(x),B1(0)) <94,
then
H"(B1(x)) = (1= (6|n))vol(By(0)).
(2) If
H"(Bi1(x)) = (1-6)vol(Bi(0)),
then

dgu(Bi(x),B7(0)) <¥(4|n).
The following facts follow from Theorems 2.1 and 2.2.

Lemma 2.1. Let X € M(n,—1,0).
(1) Given €,6>0, there are €' =¥ (€|n) and &' =5 /3 such that Res TR 5.
(2) Let A be a compact subset of R. Then for any € >0, there is 6 >0 such that AC R s.

Proof. We include the proof here for readers’ convenience.
(1) Let x € R 4. By definition, this means
dcr(Br(x),B;(0)) <er
for all 0 <r <4. By Theorem 2.2 and Bishop-Gromov relative volume comparison,
H"(Bs(y)) = (1= (e[n))vol(B{(0))
holds for all y € Bs/3(x) and all 0 <s <¢/3. Applying Theorem 2.2 (2), we see that
dcr(Bs(y),Bs(0)) <¥(e[n)s,

that is, y € Ry (¢|n),s/3 for all y € Bs3(x). Therefore, x € Ry, 5, where €' =" (e[n) and
8'=46/3.
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(2) Lete>0. For each x € A, we pick d(x) >0 as the largest J so that
dcn(B,(x),B/(0)) <er

holds for all 0 <r <¢. It suffices to show that é(x) has a uniform positive lower
bound for all x € A. We argue by contradiction. Suppose that there is a sequence
x; € A with 6(x;) —0. Then by compactness of A, x; subconverges to some y € A,
which is also regular. Therefore, for € >0, which will be determined later, there is
do="00(€’,y) >0 such that y € R 5,. Thus it follows from Theorem 2.2(1) that

H" (Byy(y)) =2 (1="¥(€'|n))vol(Bg, (0)).
By volume convergence,
H" (By (x:)) = (1=2% (€'|n))vol (B (0))

for i large, thus
dcu (By(xi),Br(0)) <¥'(€'[n)r

for all 0 <r <dp. Now we choose €’ >0 so that ¥/(¢’|n) <e, then x; € R, for all i
large. A contradiction to §(x;) — 0. This completes the proof. O

Theorem 2.3 ([5]). Let X € M(n,—1,v). Then its singular set S has Hausdorff dimension at
most n—2.

Theorem 2.4 ([5]). Let X € M(n,—1,v) and let A be a closed subset of X with H"~1(A)=0.
Then X — A is path connected. Moreover, given any 6 >0 and any pair of points x,y€ X—A, a
path o in X — A between x,y can be chosen that

length(c) <(1+6)d(x,y).

Theorem 2.5 ([5]). Given dimension n, there is a constant €y(n) >0 such that the following
holds for all 0 < e <eg(n). Let X € M(n,—1,v) and x € X such that

dcu(Bs(x),Bj(0)) <eJ,

where 6 >0. Then B, (x) is contractible in By, (x) for all 0 <r<6/10.

2.2 Equivariant GH convergence with Ricci and volume lower bounds
In the study of fundamental groups associated to a convergent sequence

(M, x;) CH, (X,x)
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with conditions (2.1), it is natural to take the universal covers and their convergence into
account. A powerful tool is the equivariant Gromov-Hausdorff convergence introduced
by Fukaya-Yamaguchi [9]. After passing to a subsequence, we can obtain convergence

A G
(Mj,xl',].—'j) —H> (Y/y/r)

ln,- ln (2.2)

(Mix) 25 (Xx).

Here I';=71; (M;, x;) acts isometrically, freely, and discretely on the universal cover (M;, ;).
This sequence of I';-actions converges to a limit isometric I'-action on the limit space Y.
Due to the noncollapsing condition on (M;,x;), the limit group T is a discrete subgroup
of Isom(Y); see Corollary 5.1.

We below state a result by Chen-Rong-Xu [6], which roughly states that if a point z€Y
is sufficiently regular, then I'-action cannot fix z.

Theorem 2.6 ([6, Theorem 2.1 and Corollary 2.2]). Given n,0>0, there is a constant €(n,v) >
0 such that the following holds.
In the convergence (2.2) with conditions (2.1), if z€Y is (€,6)-regular, where 6 >0, then T

acts freely on Bs;4(z).

We will also need a quantitative result describing the action of any non-trivial sub-
group of Isom(Y), which is proved in a joint work by Rong and the author [12]. Given a
subgroup H <Isom(Y'), we write its displacement on a 1-ball by

D1, (H)=sup{d(hzz)|z€ Bi(y),h € H}.

Theorem 2.7 ([12, Theorem 0.8]). Given n,v> 0, there is a constant §(n,v) > 0 such that for
any space (Y,y) € M(n,—1,v) and any nontrivial subgroup of H of Isom(X), Dy, (H)>6(n,v)
holds.

3 Illustrative examples

In this short section, we briefly review some relevant examples of convergent sequences

M; “H X with conditions (1.1) by Otsu [11] and Anderson [1]. In particular, we shall see
that in general the homomorphisms ¢; in Theorem 1.1 and ¢; in Theorem 1.2 are not
injective.

Example 3.1. Otsu [11] constructed a sequence of doubly warped metric products on
M=SPT1x 81, where p>2and g >2:

[0,b] x 7, SP xp,, ST, gi=dr? —I—fiz(r)ds%—i—h?(r)dsé.
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such that
Ric(gi) >n—1, diam(g;)=b;—m, vol(g;) >v>0.

Ats=0or b;, f; and g; satisfies

fi(s)=0,  fl(s)=1,  hi(s)>0,  limhi(s)—0  hi(s)=0.
1—00
Asi— o0, (M,g;) converges to Susp(S? x §7), a suspension over S¥ x §1.

Since the S7-factor is always the round sphere in the construction, we can take the
antipodal Z,-action on the S7-factor and consider the quotient (N;,g;) = (M,gi)/Z,. The
resulting (Nj,g;) is Riemannian because the Z;-action is isometric and free on (M, g;).
Then as i — oo, N; converges to X =Susp(S” x RP7). In terms of fundamental groups, we
have

ﬂl(Ni):Zz, 7T1(X):id.

The forward homomorphism ¢; : 7t1 (N;) — 711 (X) has kernel Z,. The limit space X has
two singular points as the vertices of the suspension. For small € and 6 >0, R ; is home-
omorphic to (0,1) x S” x RP1. In particular, 711 (R 5) = Za.

Example 3.2. Modifying the Eguchi-Hanson metric [8] on TS?, the tangent bundle of S?,
Anderson [1] constructed a sequence of metrics g; on M?*, the double of the disk bundle
in TS?, with

Ric(gi) >0, diam(g;) <D, vol(g;) >v>0.

M is diffeomorphic to 52 x S2. Recall that the Eguchi-Hanson metric, written as /, on
TS? is Ricci-flat and has Euclidean volume growth. It has a unique asymptotic cone as
C(RP?)=R*/Z,.

Let Z be the zero-section in TS? and let B;=T;(Z ,ri’zh) be the tubular neighborhood
of Z of radius 1 with respect to the metric ; 2h, where r; — co. Modifying the metric
around 0B; and then doubling it, one obtains the desired metric g; on M. As i — oo,
(M,g;) converges to X =Susp(RP?), a suspension over RP®. X has two singular points
as the vertices. For small €,6 >0, Resis homeomorphic to (0,1) x RP3. Hence

ﬂl(M):ﬂl(X):id, 7'[1( 2’5)222.

The backward homomorphism ¢;: 711 (R¢ 5) — 711 (M) has kernel Z,.

4 Construction of ;

In this section, we always assume that M; is a sequence of closed n-manifolds with (1.1)
that Gromov-Hausdorff converges to X. Let 0 <e <¢€o(n)/2, where €y(n) is the constant
in Theorem 2.5. Let x be a regular point of X and x; in M; converging to x. By the proof
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of Lemma 2.1(1), there is § >0 such that Bs(x) CR. s, thus x€ R 5 We may further shrink
this ¢ later. The main goal of this section is to construct the group homomorphisms

P (R 5,x) — 1 (M, x;)
for all i large.

Lemma 4.1. Given any 0<e <eo(n)/2 and 6 >0, the following holds for all large i.
Let z; be a point in M; that is 5/30-close to a point z € R 5. Then any loop in Bjs;30(z;) is
contractible in Bs(z;).

Proof. We set
Wi:dGH(Mi/X) —0.

Then for each z€ X, we can choose a point w; € M; that is #;-close to z. By the convergence

M; S X and the compactness of X, there is iy large such that

don(Bs(w;),Bs(z)) < eoé’” 5

holds for all z€ X, all w; € M that is #;-close to z, and all i > iy, where €y(n) is the constant

in Theorem 2.5. Now fixing a point z € Rg 5» we have

dcr(Bs(z),B5(0)) <ed.
Thus by triangle inequality,
dGH(B(;(wi),Bg (0)) < (€+€0(71)/2)5 < 60(7’1)5.

Then by Theorem 2.5, every loop in Bj,19(w;) is contractible in Bs,5(w;). Let z; be any
point in M; that is §/30-close to z. We have

d(z,w;) <d(z;,z)+d(z,w;) <5/30+7n;.

Thus when i is large with 7; < J/30, we see that Bs/30(z;) C Bs/10(w;). Therefore, every
loop in By /30(z;) is contractible in By ,5(w;) C Bs(z;). O

With Lemma 4.1, we follow a similar construction in [13, Lemma 2.4] (also see [15])
to construct nearby loops and homotopies on M; from the ones on R¢ ;. For two com-
pact length metric spaces (X1,x1) and (Xp,x7) that are close in the Gromov-Hausdorff
distance, we say that two curves 0;:[0,1] — X;, where j=1,2, are e-close, if

d(oq(t),02(t)) <e

for all t €[0,1]; in other words, 07 (t) € Xj is € Gromov-Hausdorff close to 0»(t) € X; for all
te[0,1].
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Lemma 4.2. We write 7;=dcy(M;,X) — 0. Then for sufficiently large i, the followings hold.
(1) Forany loop o:[0,1] = R¢ 5, there is a loop o; in M; that is 51;~close to 0.

(2) Let 0; and o; be loops in M; that are both 6 /300-~close to a loop o in R 5, then o; and o are
free homotopic in M;.

3) Let o and T be two loops in R? ;. Let 0; and T; be loops in M; that is 6 /300-close to o and
p €,0 p

o}

T, respectively. If o and T are free homotopic in R 5, then 0; and T; are free homotopic in
M;.

Proof. (1) The construction of ¢; is the same as the proof of [13, Lemma 2.4 (1)]. Namely,
using the uniform continuity of o, we choose a suitable partition of [0,1]. Then for each
intermediate point in the partition, we can pick nearby points in M; and then join them
by minimal geodesics. (2) By uniform continuity of &, we choose I >0 such that

d(o(t),0(t')) <5/300

for all t,t' € [0,1] with |t—t'| <I. Let {to=0,t1,...,tj,...,ty = 1} be a partition of [0,1] with
|ti11+t;| <Ifor all j. By triangle inequality, it is clear that

d(U’i<t]'),0'i<tj+1)) §35/300, d(a{(tj),a{(tj+1)) < 3(5/300

Let c;j be the loop obtained by joining oj[;,;,,), @ minimal geodesic from oj(t;.1) to

0;(tj11), the inverse of o[, . 1, and lastly a minimal geodesic from 0;(t;) to 0i(t;). Since

titip1
d(o;(t;),07(t;)) <2:6/300

for all i. By construction, one can verify that

image of c;,; C By30(ci(t))).

Because 0;(t;) is §/300-close to o (t;) € Rg 5, by Lemma 4.1, ¢; j is contractible in M; for all
j. Thus ¢; and o] are free homotopic. (3) Let H:S' x[0,1] = R¢ ; be a homotopy between
o and t. We follow the method in [13, Lemma 2.4] to construct a homotopy H; between
o; and T; as below. By the uniform continuity of H, we can choose a finite triangular
decomposition ¥ of S! x [0,1] so that

diam(H(A))<6/300

for each triangle A of X. For any vertex v of %, if v is on the boundary of S1x [0,1], then
H;(v) is naturally defined as a point on ¢; or T7; if not, then we define H;(v) as a point
in M; that is #;-close to H(v). Next, we define H; on every edge of X: for an edge that
is on the boundary of S!x[0,1], H; on this edge is naturally defined as part of ¢; or T;
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for an edge not on the boundary with vertices v and w, we map it to a minimal geodesic
between H;(v) and H;(w). If ; <6/300, then by construction, every triangle A satisfies

H;(0A) C Bs/30(H;i(v)),

where v is a vertex of A. Since H;(v) is §/300-close to H(v) € R¢ 5, we can apply Lemma
4.1 to contract the loop H;(A). Applying this to all the triangles of X, we result in the
desired homotopy between ¢; and T;. O

Now we construct the backward homomorphism 2.

Definition 4.1. Let [0] € 711 (R¢ 5,x) represented by a loop ¢ based at x in R 5. For i large that
fulfills Lemma 4.2, we draw a loop o; in M; based at x; that is 6 /300-close to o. We define

l[);S 170 (R;‘;,x) — 7 (Mi,xi),

[] = [o3].

Theorem 4.1. The above constructed y° is well-defined and is a group homomorphism for all i
large.

Proof. By Lemma 4.2 (2), y°[0] = [0;] is independent of the choice of ¢;. It also follows
from Lemma 4.2 (3) that the definition is independent of the choice of ¢.

It is straightforward to check that ¢ is a group homomorphism. In fact, let ¢ and T
be two loops in R_ ; based at x, and let ¢; and T; be loops in M; that is §/300-close to o
and T, respectively.’Since the the product ;- 7; is clearly 6 /300-close to ¢ -7, by definition,
we have

Yllo)-g? [t =[oi]- [t] = loi-w) =} [o- 1) =} ([0] - []). 0
For 0<e<e' and 0< ¢’ <6, we have inclusion

o o
€6 g Rel,(s/.

For both R¢ ; and R, 5, we have backward homomorphisms defined; they are indeed
related by the inclusion map, as stated in Lemma 5.3 below. Due to the dependence on €,
we will write ¢ instead of ? for clarity.

Lemma 4.3. Let 0<e <€’ <ep(n)/2 and 0 <6’ <6. Suppose that i is large such that both
homomorphisms

VAV
lpf"sznl( 2/5,x) — 111 (M, %), gbf 0 :711(7?,2/,5/,3() — 711 (M, x;)

are defined. Then l/)f"s coincides with the composition

e 5!

* wi
7T (R(g,é,x) l—> 71 (sz,x) — 7 (Mi,xi),

, ) ) o o
where 1 is the inclusion map R ;=R 5.



14 Pan] / J. Math. Study, 58 (2025), pp. 3-21

Proof. Let [o] € 11(R¢ 5,x), where ¢ is a loop in R ; based at x. Then o0 naturally repre-

sents an element of 711 (R 5,x). Let 0; be a loop in M; based at x; that is &' /300-close to
too. According to Definition 4.1, we have

957 otulo] =57 [1o0] =[]

Since ¢’ <4, the loop 0; is also §/300-close to o0 =0 in R: s5- Therefore,

g5 o] =loi] = 9§ or.lo]. O

5 Surjectivity of ¢;

The main goal of this section is to prove Theorem 1.2. The proof of surjectivity of lpf is
a contradicting argument and we shall apply equivariant GH convergence to the contra-
dicting sequence.

Before starting the proof of Theorem 1.2, we prove some results about the equivariant
GH convergence.

Lemma 5.1. Let us consider the diagram (2.2) with conditions (2.1). Suppose that x € R ;,
where 0 < e <e(n) and 0 <6 <(n) are sufficiently small. Then there is a constant 1(n,5) >0
such that any nontrivial element in 7t1(M;,x;) has length at least 1(n,d), where i is large.

Proof. The proof is a localized version of an argument by Anderson [1].
Let g€y (M;,x;) with d(g;%;,%;)=1;>0. We shall prove a lower bound for liminf/;:=I.

Let F; be the Dirichlet domain of M; centered at %;. Since
Si(FiNBs (%)) CBy4s(%;),  gi(FNBs(%))N(FNBs (%)) =2,
we have volume estimate
2vol(Bs(x;)) =vol(F;NBs(%;))+vol(g;(F;NBs(%:)))
<vol(B;, (%))
év(n,_l,li—i—é),

where v(n,—x,7) means the volume of an r-ball in the n-dimensional space form of con-
stant curvature —x. By volume convergence, as i— 00, we have

vol(Bs(x;)) — H" (Bs(x))
>(1-Y(e|n))-v(n,0,0)
> (1=¥(e[n))- (1= ¥(3[n))-0(n,—1,6).
These lead to
v(n,—1,1;+96)
v(n,—1,0)

for all i large, which gives a universal lower bound I(#,6) for liminf/;. ]

>1.9(1—¥(e,8|n)) >15.
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Corollary 5.1. In the diagram (2.2) with conditions (2.1), the limit group I is discrete.

Proof. Letz€ X be a regular point. We choose small 0<e<e(n) and 6>0 such that ze R ;.

Let z; € M; converging to z and let Z; € M, be a lift of z;. By Lemma 5.1, the orbit I';-Z; is
I(n,0)-discrete. Passing this to the limit, we see that I' is a discrete group. O

Lemma 5.2. Let (N;,x;) € M(n,—1,v) with an isometric T';-action on each Nj. Suppose that the
sequence converges

(N;,x;,T;) Ch, (Y,y,G)

and the limit group G is discrete. Let g€ G be an element of finite order k and let «y;€T'; converging
to g. Then
(1) ;i has order k for all i large;

(2) (1) Ch, (g), where (-) means the subgroup generated by that element.

Proof. (1) First note that ¥ LN g"=e asi—o0. We claim that () LN {e}. In fact, let H be
the limit of (¥) and suppose that H has a non-identity element h. We pick a point z€ Y
with d(hz,z) >0. Since d(v¥z;,z;) =0, where z; € M; converging to z, for any 0</<d(hz,z),
we can find a sequence m; such that

d(('yf-‘)mfzi,zi)—)l.

The sequence (7¥)™ would converge to an element of H with displacement !/ at z. Because

1€(0,d(hz,z)) is arbitrary, we result in a contradiction to the discreteness of G. This proves
the claim.
By this claim, we have D ,,({7¥)) —0. On the other hand, by Theorem 2.7

D1, ((7£)) 2 6(n,0) >0

if <’yf) is nontrivial. We conclude that 'yf =e. Itis clear that ; cannot have order m strictly

less than k; otherwise /" SH # g™, We complete the proof that 7; has order k. (2) is a
direct consequence of (1). O

Let 7y be an isometry of Y. We write
Fix(y)={ze€Y|yz=z}
as the fixed point set of .

Proposition 5.1. In the convergence (2.2) with conditions (1.1), Fix(vy) has Hausdorff dimension
at most n—2 for all non-identity y€T.
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Proof. Suppose the contrary dimy (Fix(7y)) >n—2. Then H!(Fix(y)) >0 for some real
number n—2 <[ <n. Let S be the singular set of Y. By Theorem 2.3, C :=Fix(y)—S also
satisfies ' (C) > 0. Let z be an [-density point of C, that is, z€ RNFix(+y) such that

Let rj—> 00 be a sequence that realizes the above limsup and let

(r;Y,2) < (C.Y =R",0)

be a corresponding tangent cone at z. With respect to this convergent sequence, y sub-
converges to a limit isometry ¢ of R”, and C subconverges to a closed subset C, CIR". It
is clear that by construction, g fixes every point in C,. By a standard covering argument,
C.NB;1(v), and thus Fix(g)NB1(v), have positive I-dimensional Hausdorff measure.

The limit isometry g, which an isometry of IR", satisfies dimy, (Fix(g)) >n—2. Since
g € O(n), by linear algebra we conclude that ¢ must be a reflection of R” that fixes a
hyperplane. In particular, ¢ has order 2. By Lemma 5.2 (1), v has order 2 as well. Let
7v; €T; that converges to 7y and let M; = M;/ (7i). Lemma 5.2 allows us to consider the
convergence

(Mizi, (7)) —2 (Y,z,(7)) (rY,z,(7) —22 (R0,(g))
J/T[i ln lﬂi ln (5.1)
Myz) 5 Y=Y/(y)2), (Y2 —5 (RY/(9)9).

Because ¢ is a reflection in IR”, the quotient R" / (g) is isometric to the Euclidean halfspace
H" = {(ay,...,an)|a, > 0}. In particular, H" appears as a tangent cone of a non-collapsing
Ricci limit space Y at 7. This is a contradiction to Theorem 2.3 and thus completes the
proof. O

If one seeks a weaker statement of Theorem 1.2 that requires €(1,v) instead of €(n),
there is an alternative and shorter proof of Theorem 5.1 based on a result by Chen-Rong-
Xu [6], that is, Theorem 2.6 which we have recalled in Section 2. We also include this
short proof here since it may have some independent interest.

Proof. We shall show that Fix(y) C S; then the Hausdorff dimension estimate follows
from Theorem 2.3. In fact, let z€ Y be a regular point and let 0<e <e(n,v), the constant in
Theorem 2.6. Then there is some ¢ >0 such that z is (€,6)-regular. Applying Theorem 2.6
to the first diagram of (5.1), we conclude that (7y)-action, and thus v, does not fix z. O

We are in a position to prove Theorem 1.2. For reader’s convenience, we restate the
surjectivity part in Theorem 1.2 as below.
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Theorem 5.1. Let 2 : 71( e 5:X) = 111 (M;,x;) be the group homomorphism constructed in
Definition 4.1. When & is sufficiently small, y° is surjective for all i large.

Proof. We argue by contradiction. Suppose that for each 1/, where j € IN, we can find
some i(j) >i and some element gi(j) €M (Mi(j),xi(j)) such that g;; is not in the image of
gbil(% . Since diam(M;) <D, 111 (M;,x;) can be generated by elements of length at most 2D.
Together with Lemma 5.1, without loss of generality, we will assume that each g;(;) has
length between I(1,6) and 2D at x;(j).

For this sequence i(j), after passing to a subsequence if necessary, we consider the
equivariant Gromov-Hausdorff convergence:

" A ~ GH
(Mi(), %igj) Li.8iy) —— (You.L,8)

lﬂ'i lﬂ'
(Mi(), i) =L (X).

Because x is regular, so is y. Under the isometry g, gy is regular as well with d(gy,y) €
[I(n,6),2D]. By Lemma 5.1, the points y and gy are not fixed by any y € I —{e} because
they are lifts of x € R¢ ;. Let

C(YRg(Y))u( U Fix(’y)).

yer—{e}

By Theorem 2.3, C has Hausdorff dimension at most n—2.

We claim that C is closed. It suffices to show that U, cr_(.3Fix(7) is closed. In fact,
let z; be a convergent sequence U, cr_ . Fix(7) with limit z. Each z; is fixed by some
element y; €' —{e}. Because each 7;, where i large, moves z at most by distance 1, ; is
precompact in I'. By the discreteness of I', we see that all vy; are the same after passing to
a subsequence: y;=g€I'—{e}. Hence

gz=Ilimgz;=limz;=z.
1—00 1—00

This shows that z€ U, cr_ o Fix(7). As aresult, U, cr_ 1 Fix(7) is closed.

We note that y,gy € Y —C because they are in 7771 (x) and thus not fixed by any -y €
I'—{e} according to Lemma 5.1. As a result of Theorem 2.4, we can connect y and gy by a
path ¢ that is contained in Y —C. In particular, ¢ is in the regular set and avoids any point
that is fixed by some nontrivial element of I'. Because the image of ¢ is compact and C is
closed. The distance §; =d(0,C) is positive. Let

T::T(s]/z((f):{ZEY ‘ d(Z,U’)S(sl/Z}
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be the closed tubular neighborhood of ¢ with radius 41 /2. By construction, T does not
intersect Fix(+y) for all non-identity 7y €T'. Because T is compact,

= f d(a,
2 aemlgr (e} (a,ya)

is positive. Setting d3=min{d;/2,6,/4}, we claim that B, (z) is isometric to Bs, (7(z)) CX
for all ze o, where :Y — X =Y /T is the quotient map. In fact, first note that for any two
points a,b € Bs,(z), we clearly have a,b € T. Then for any other orbit point a’ € Ta—{a}, it
follows from triangle inequality that

d(a',b)>d(a’',a)—d(a,b) >8,—265>6,/2>d(a,b).
This verifies the claim: for all a,b € By, (z),
dy(a,b)=dy(Ta,Tb)=dx(mt(a),(D)).

We choose a small €; >0 such that ¥(e1|n) <e, where ¥ is the function in Lemma
2.1(1). With this €1, by Lemma 2.1(2), there is J4 >0 such that

v g R€1,54 (Y)'

Let d5:=min{d3,04} >0. Since By, (z) is isometric to Bs,(71(z)) for all z € o, together with
Lemma 2.1 (1), we conclude that

.= 7T(‘T) - R61,§5 (X) c Inth,55/3-

Now we go back to the sequence of manifolds. Along M; i(j), let 0y(;) be a sequence of
paths from ;) to g;(;) ;(;) that converges uniformly to o. Then its projection 77; ((71(]-)) =:
7;(j) is a loop that represents g;(;) and uniformly converges to a loop 77(¢) in X as j— 0.
By the construction in Definition 4.1, when j is large we have

1[]5(%3 7T1(IHtR€55/3, )—>7T1(M1,X1) with lp55/3[ ()] =&i(j)-

Applying Lemma 4.3 with e =€/, we obtain

1/j
gi(])_ 55/3[0] (]iol*[(f]

where ¢ is the inclusion map IntR. 5,3 — IntR.1,;. In particular, g;(;) is in the image of

1,011(% - This contradicts with our choice in the beginning that g;(;) is not in the image of 1,[)11(%

and thus completes the proof. O

With Theorems 4.1 and 5.1, now we complete the proof of Theorem 1.2 by Lemma 5.3
below.
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Lemma 5.3. Let
¢i 17 (Mz-,xl-) — 7 (X,x), lpl& 17 (RZ’(S,X) — 77 (Ml-,xi)
be the surjective homomorphisms in Theorems 1.1 and 5.1, respectively. Then

o) :mi(REsx) = m(X,x)
coincides with 1, for all i large, where 1: R s — X is the inclusion map.

Proof. Because X is semi-locally simply connected [13], there is g >0 such that every loop
contained in a dy-ball of X is contractible in X. We set

&, =min{4y/20,5/300}.

We recall that the forward homomorphism ¢; can be constructed as follows ([15] or
[13] for details). When i is large such that dgy (M;, X) <41, for any loop o; in M; based at
x;, we can draw a loop ¢ in X based at x such that ¢ is 5;-close to ¢;. Then one can define
the desired ¢; by sending [0;] to []. The choice of dy assures that ¢; is well-defined and a
surjective homomorphism.

Now let [o] € 711(R¢ 5,x) represented by a loop ¢ based at x in R ;. When i is large,
let 0; be a loop based at x; € M; that is d;-close to . By the constructions of ¢; and l/)l‘-s, we
have

piow} o] = piler] =[o] € 1 (X, ). O

Next, we prove Theorem 1.3.

Proof of Theorem 1.3. We choose a sufficiently small 6 >0 so that we can apply Theorem
1.2 to construct surjective group homomorphisms

9l 70 (R 5,%) = 711 (M, x;)
for all i large. If the inclusion map 1/ : R¢ s X induces an injective homomorphism
I nl(Rg,J,x) — (X, x),
then by Theorem 1.2 (2), the composition

0 ¥ i
1 (R 5,x) — 11 (M, x;) £ m (X, x)

is an isomorphism. Together with the surjectivity of ¥ and ¢;, we clearly have isomor-
phism 7r1(X) =~ 711 (M;). In general, if i is not injective, we shall analyze its kernel. We
claim that

keri] =kery?.
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If this claim holds, then

m(Resx)  m(Resx)

US| (Mi/xi) = kerl/]? - kerli

=70 (X,x).

One side of the inclusion kery? Cker/ is clear due to Theorem 1.2 (2). It remains to prove
the other direction. Let us consider a composition of inclusion maps t0j =i’

RS JyRedsx.
They induce
(R %) L5 01 (RE,x) 5 1 (X, )
with 1,0, =10 being surjective. By the assumption that ., is injective, L, is an isomorphism

and
ker Li =kerj,.

Let [0] € kerj, represented by a loop ¢ at x in R ;. Then ¢ is contractible in RZ. Let
H:[0,1]> = R be a nullhomotopy of ¢. By Lemma 2.1 (1,2), there are ¢’ =¥ (e|n) > ¢ and
0<d’' <4 such that

H(0,1P) C RS,

When i is large, we draw a loop 0; based at x; € M; that is ¢’ /300-close to ¢. It follows
from Lemma 4.2 (3) that o; is contractible in M;. By the construction of
l/)f,’y 17 (RSI,(;/,X) — 77 (Mi,xi)
and Lemma 5.3, we have
95 0] =y [o] = [o7] =id € 1 (M x7).
This shows that
kery< Dkerj, =kers

and hence completes the proof.
When R¢ is simply connected, because i, is an isomorphism as shown above, X is
also simply connected. Consequently, 711 (M;) ~ 771 (X) is simply connected. O
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