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Abstract. Let F be a closed subset in a finite dimensional Alexandrov space X with
lower curvature bound. This paper shows that F is quasi-convex if and only if, for any
two distinct points p,r € F, if there is a direction at p which is more than T away from
ﬂ; (the set of all directions from p to r), then the farthest direction to ﬂ; at p is tangent
to F. This implies that F is quasi-convex if and only if the gradient curve starting from
r of the distance function to p lies in F. As an application, we obtain that the fixed
point set of an isometry on X is quasi-convex.
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1 Introduction

Finite dimensional Alexandrov spaces with lower curvature bound can be viewed as a
generalization of Riemannian manifolds with lower sectional curvature bound [2]. Com-
pared to Riemannian manifolds, Alexandrov spaces might have some singularities, so
that some important subsets appear as some kinds of analogues of totally geodesic sub-
manifolds, such as convex subsets, extremal subsets and quasi-geodesics [3,4]. Recently,
such a kind of subsets named quasi-convex subsets has been introduced [6]. They in-
clude not only all convex subsets without boundary and extremal subsets but also more
other subsets, such as fixed point sets of isometries on Alexandrov spaces. Moreover, all
shortest pathes in a quasi-convex subset are quasi-geodesics.
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To show the definition of quasi-convex subsets, we first make some conventions on
notations.
e Alex(k): the set of complete and finite dimensional Alexandrov spaces with curvature
>k.
e SZ: the complete and simply connected space form of dimension 2 and curvature k.
e |pql, [pq]: the distance, a minimal geodesic (i.e. shortest path) between p and 4.
e 17: the direction from p to g for a given [pq].
e 1} the set of all directions from p to g.
For a point p € X € Alex(k), we denote by X, X the space of directions of X at p which
belongs to Alex(1) [2] . In X, X, ﬂ?, is a closed subset, and | Tﬂ,ﬂ; | is the distance between
13 and - And to p,q,r € X, we associate p,q,7 € S; with |pg| = [pq|, |p7| = [pr| and
57| = |qr|?, and then we denote by Z;gpr the angle at § of the triangle A pg7.

Definition 1.1 ([6]). In an X € Alex(k), a closed subset F is called to be quasi-convex if the
following condition is satisfied: if the distance function to q & F restricted to F, dist,|r, attains a
minimum at p € F, then for all r € F\{p}

| ﬂgﬂ; | < g (or equivalently, 7 qpr < g). (1.1)

Here, we make a convention that both the empty set and a single point are quasi-convex in X.

By Toponogov’s Theorem?, it is obvious that ‘| ﬂgﬂz | < 2’ implies ‘Zyqpr < '/, but
not vice versa; however, they are equivalent to each other in the situation of Definition
1.1 [6]. Moreover, due to the arbitrariness of ¢, (1.1) is in fact equivalent to | Tgﬂ; | <75 for

any [pq].

Remark 1.1. In this paper, we say that F is extremal in X if (1.1) holds for all r€ X\ {p} in
Definition 1.1. This coincides with the concept ‘extremal’ in [3] if F contains at least two
points [6]. If F is the empty set or a single point and if k=1, some extra conditions are
added in [3] for some kind of completeness ([6]).

Remark 1.2. In [6], locally quasi-convex subsets are also defined. In detail, a subset F in
an X € Alex(k) is locally quasi-convex if for any x € F there is a neighborhood U, of x such
that U,NF is closed and if distq| r with g ¢ F attains a minimum at p € FNU,, then the
corresponding (1.1) holds for all r € FNU,\ {p}. In a complete Riemannian manifold, a
closed and locally quasi-convex subset must be a totally geodesic submanifold.

It is obvious that the quasi-convexity (as well as the extremality) of F is determined
by the geometry at points realizing minimums of dist,|r with ¢ F. A natural question is
what is the essential geometry to a general point of F. The first result of this paper gives
an answer to it.

fk>0and |pg|= %, it is necessary to add a condition that 7 lies in a geodesic [p].
1For the theorem, one can refer to Section 3 in [2] (or Theorem 1.1 in [6]).
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Theorem 1.1. Let F be a closed subset in an X € Alex(k). Then F is quasi-convex in X if and
only if, for any two distinct points p,r € F and 1 €L, X, there is { €} and { €E,F with [n¢| < 7
such that

cos|y§| > cosy§|cos|EEl; (12)

where if X.,F = (i.e. p is an isolated point of F), then (1.2) means that cos|n{| > 0.

Note that, in Theorem 1.1, if  lies in X, F, then we can let { =7. And an alternative
formulation of (1.2) is Z17¢{ < Z.

Remark 1.3. In Theorem 1.1, according to the proof of Theorem 1.1, if F is quasi-convex
in X, we can in fact select ¢ with |1¢| < 7 to satisfy a bit stronger version of (1.2):

cos|i iy, | > cos|y&|cos| 1}, ¢]-

Restricted to ‘extremal’ case, Theorem 1.1 can be formulated as follows, which can be
seen almost obviously from the proof of Theorem 1.1.

Corollary 1.1. Let F be a closed subset in an X € Alex(k). Then F is extremal in X if and only if,
for any peF and any 17,{ €L, X, there is {€X., F with || <5 such that cos || >cos|n|cos|(E|
(which means that cos|n{| >0 if £,F =®).

From Theorem 1.1, we can derive another equivalent condition of quasi-convexity,
which will be very helpful to see some nice properties of quasi-convex subsets.

Corollary 1.2. Let F be a closed subset in an X € Alex(k). Then F is quasi-convex in X if and
only if, for any two distinct points p,r € F, if there is 1 € £, X satisfying [n 1, | > 7, then the
farthest direction to 1)}, in £, X belongs to £, F.

Note that, the farthest direction ¢ to )}, in £, X, i.e. [¢ ), [=max{[v i}, [:v€EpX}, is
unique if the maximum is bigger than 7 (by Toponogov’s Theorem). In Corollary 1.2, if
EpF =0, then “if there is 7 € X, X satisfying [ 1}},| > 7, then ...” means that |57 }},| < 7 for
all 7 €Z, X. In Sections 3 and 5, we will present two equivalent versions of Corollary 1.2
(see Propositions 3.1 and 5.1).

Similarly, for ‘extremal’ case, Corollary 1.2 can be formulated as follows: In an X €
Alex(k), a closed subset F is extremal if and only if, for any p€ F and { €¥, X, if there is n € X, X
satisfying |nC| > %, then the farthest direction to { in ¥, X belongs to ¥.,F. The necessity of the
extremality of F here can be seen from [3], and the sufficiency has been given in [5].

Remark 1.4. Based on Remark 1.2, one can give the corresponding versions of Theorem
1.1 and Corollary 1.2 (and Propositions 3.1 and 5.1) for local quasi-convexity.

Remark 1.5. Let F be a quasi-convex subset in X € Alex(k). [6] has shown two important
properties of F. One is that ¥, F is also quasi-convex in 2, X for any p€F, and the other is
that a shortest path in F is a quasi-geodesic in X. They can be proven just from Definition
1.1 without involving the new viewpoints in Theorem 1.1 and Corollary 1.2.
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In the rest of the paper, we first give proofs of Theorem 1.1 and Corollary 1.2 in Sec-
tions 2 and 3. Then, as applications of them, we will show several properties of quasi-
convex subsets. For instance, two points in a quasi-convex subset can be jointed with a
curve in the subset if they are close sufficiently (see Section 4), and the intersection of two
quasi-convex subsets is also quasi-convex (see Section 5.2). Moreover, based on Corollary
1.2, we can illustrate quasi-convex subsets by gradient curves of distance functions (see
Section 5.1). This will make it easy to judge some kinds of subsets to be quasi-convex (see
Sections 5.2-5.4), such as the fixed point set of an isometry.

2 Proofs of Theorem 1.1 and Corollary 1.1

The main goal of this section is to give a proof for Theorem 1.1. In the proof, we will use
the following facts in Alexandrov geometry.

Lemma 2.1 ([2]). Let X € Alex(k) and p € X. Then for any small € >0 there is a neighborhood
Ue of p such that, for any [pq],[pr],[qr] C Ue,

0|91, |—Zrgpr <e, OG0 |—Zipar<e and  O<| /]| = Ziprg<e.
Lemma 2.2 (The first variation formula [2]). Let X € Alex(k), and let p,r,q; € X with q; — p
as i— oo. If there is [pq;] such that 1% converges to 17 (€ £,X) as i — oo, then

limi‘qﬂ_mr’ = —cos| iy, 7]

imeo | pgil
As a result, lim;_,o, Z3rpq; =| (" .

Proof of Theorem 1.1. We first show the necessity of the quasi-convexity in the theorem.
Note that we can let { =17 if 7 € Z,F, so we can assume that 7 ¢ £,F. Then there is
qn € X\F such that g, — p and %' =1 as n—co. Let p, € F satisfy |q,pu|=|g.F|. Note that
pn— p as n— oo, and we can complete the proof according to the following two cases.

Case 1: there is at least a subsequence of {p, } which belongs to F\{p}. In this case, there

must be a subsequence {py,, } with p,. # p such that Ti"" converges to some ¢ € X, F as
i— 00. We claim that |#¢| <7 and

cos|n 1}, | = cos|né|cos| 1), & (2.1)

This implies that there is ¢ €1}, such that (1.2) holds. So, we just need to verify the claim
in this case. For simpleness, we still denote by {p, } the subsequence { p,, }. Since |, px| <
|qnp| and g,,pn — p as n— co, by Lemma 2.1 it is easy to see that [{| < 5. For (2.1), due
to the similarity, we only give a proof for the case where k =0. By the quasi-convexity of
F, we have that -

; (2.2)

Zk‘hpnr <
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Consequently, by the Law of Cosine, we have that

|”Pn’2+ ’”lnpn|2 = |51n7’|2/
where
rpul® = 1rp|*+ | ppul*—2|rp|-|ppa|-cos Zorppu,
9npnl>=19up*+|ppul>—2lqnp |- |pPa|-c0s Zoguppn,

|qur > =1qup|*+ |pr1>—2|qup]| - |pr|-cos Zogupr.

It then follows that

2
[ppal |ppal ’W!' <08 ZodnpPn. 2.3)

\paul-lpr|  |pqnl

cosZorppn—i—

cos Zorpgn = —

Since g, pn — p, TZ"‘ — 1 and Tp” — ¢ as n— oo, by Lemma 2.2 we have that
Zorpqn— | fyn|  and Zorppn— | 1,6l as n—oo. (2.4)
Moreover, we make a subclaim:

=00 | pay|

=cos|n¢|. (2.5)

Note that (2.3)-(2.5) together with % — 0 as n — oo implies (2.1). In order to see the
subclaim, by Lemma 2.1 it suffices to show that there is [p,q,] and [p,,p] such that |17 15,
| = % as n — co. By the quasi-convexity of F, there is [p,q.], [pnp] and [pnpn] with m #n
such that

n 7T n m 7T
’TZnT§n|<E and |/]\Zn 5;1 ’<E

On the other hand, since p,— p and 1" —¢ as n— o0, it is not hard to see that |1}, 15" |—7
where n>>m and m — oo (by Toponogov’s Theorem), which implies

[t th |+ 1151 = .

It therefore follows that | TZZT?n | =+ 5 as n— oo (i.e. the subclaim is verified, so is the
claim).

Case 2: p,, =p for all large n. In this case, the quasi-convexity of F guarantees that | ﬂZ” ("
| <7, and thus |71}, | < 7 (note that ‘g, — p and 19" — 1’ implies 1" — 7, [2]). Le., there is
¢ €1, such that cos|r¢] >0, so the proof of the necessity is done if £,F=®. If £,F #Q,
we claim that

|TZ"C|:§ forany {e€X,F,
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which implies [7¢| = Z. In fact, we have that | 17" &| > Z because |q,p| =|q.F| (by Lemma
2.2), and meanwhile | 17" &| < Z (by the quasi-convexity of F). Note that the claim right
above implies that any ¢ € X, F satisfies (1.2), and thus the proof of the necessity is done.

Next, we will verify the sufficiency of the quasi-convexity in Theorem 1.1. We argue
by contradiction. Suppose that F is not quasi-convex in X. Then there exists g ¢ F and
p,r € F such that |gp| =|qF|, but for some [gp] we have that

T
15051 > 2 (2.6)
We let i éTZ. By the assumption, there is { €1}, and § € X, F with [5{| < 7 such that

cos|y| > cos|yg|-cos|¢E].

Note that ‘|| > 7’ (see (2.6)) together with ‘|| < 5’ implies that [#&| must be less than
5. However, since |qp| =|qF|, by Lemma 2.2 we have that || > 7, a contradiction. [

By restricting the above proof to ‘extremal’ case, we can easily derive Corollary 1.1.

Proof of Corollary 1.1. If { is the direction of some [pr] at p (here r is not needed to lie in F),
one just need to replace all ‘quasi-convexity” with ‘extremality” in the proof of Theorem
1.1. Then for the case where { cannot be realized by a minimal geodesic, we can draw the
conclusion by a limiting argument (note that there is [pr;] with r; — p as i — oo such that

=), 0

Remark 2.1. Similar to Corollary 1.1, if F is a nonempty quasi-convex subset in X €
Alex(k), and if X.,F # @ with p € F, then for any 7 € £,X and { € £,F there is { € Z,F
with |#&| < 7§ such that cos|n{| > cos|n&|cos|(E| (by Theorem 1.1). However, the con-
verse might not be true (as an example, one can consider a submanifold in a Riemannian
manifold which is not totally geodesic).

3 Proof of Corollary 1.2

In this section, we will first prove Corollary 1.2, and then show an alternative version of
it.

Proof of Corollary 1.2. We first verify the necessity of the quasi-convexity in the corollary.
Let p,r€F. Since there is €%, X such that [1,| > 7, the farthest direction ¢ to i}, in X, X

is unique and [§o 1}, | > 7. By Theorem 1.1 (and Remark 1.3, see (2.1)), the quasi-convexity
of F implies that there is { € X, F with [(o5| < 5 such that

cos o | > cos|gog|cos| 1.

Note that *|So 1, | > 57, “[Go 1}, [ =[S 1}, " and |So&| < 7 imply that ¢o has to be equal to ¢,
so it follows that §o € X, F.



28 Su X, Sun H and Wang Y / J. Math. Study, 58 (2025), pp. 22-37

Next, we will verify the sufficiency, and argue by contradiction. Suppose that F is not
quasi-convex in X. Then there exists 4 € F and p,r € F such that |qp| = |qF|, but for some
[gp] we have that

151> 5
Hence, by the assumption, the farthest direction ¢ to 1}, in X, X belongs to X, F. We claim
that | 17 ¢| < Z, which contradicts ‘|gp| = [gF|’ (by Lemma 2.2). In fact, if | 1} &| > Z, by
Toponogov’s Theorem it is not hard to see that |}, ¢'| > | 1%, for &’ near & in any [1} ¢]

because | ﬂ;TZ |> 7 and [}, ¢| > | ﬂ;TZ | > Z; a contradiction (because ¢ is the farthest
direction to ﬂ;). O

We now provide an alternative version of Corollary 1.2, which will be used in next
section. We formulate it in the following proposition.

Proposition 3.1. Let F be a closed subset in an X € Alex(k). Then F is quasi-convex in X if and
only if, for any two distinct points p,r € F, if § €L, X satisfies —cos| 1}, 17| >0, then there exists
¢ €XpF such that

—cos| 15,8 > —cos| 1} 7] @)

Moreover, when F is quasi-convex and —cos|{}},17| >0, the & in (3.1) can be chosen to satisfy
cos|n&| > —cos| 1), 1|; as a result, there is §' € Xy F such that

cos|1,/] = —cos| . 32

Proof. Note that the first statement is an alternative formulation of Corollary 1.2. So, we
just need to verify the second one. Assume that F is quasi-convex and 1 € £, X satisfies
—cos| 1}, 7| >0. By Theorem 1.1, there is { €1}, and ¢ € £, F with [¢|< 7 such that

cos|g| > cos|écos|Zé].

This implies that cos|17¢| > —cos |1}, 77| because —cos |7{| > —cos |1}, 17| >0 and cos|#n¢| >0.

We next show that there is ' € ¥, F such that (3.2) holds. Note that there is a sequence
of r; € F such that r; — p and ﬂ;"—> ¢ as i—o0. And for any ¢ €1, by replacing 1}, and
n with ﬂ;i and { respectively, we can conclude that there is ¢; € ¥, F such that cos|{G;| >
—cos| ¥}y ¢|, which implies cos| 1, Gil = —cos| ﬁ;ﬂ;" . Thereby, for the limit ¢’ of any
converging subsequence of {¢;} (note that X, F is a closed subset in X, X), we have that
cos| 1}, &'| = —cos| 1},¢| = —cos| 7, 7]. a

Remark 3.1. By replacing 1}, with any ¢ € £, X in Proposition 3.1, we can get the corre-
sponding version of the proposition for ‘extremal’ case. Here, the existences of ¢ and ¢’
by the extremality of F can be seen from Proposition 1.6 in [3].

In the rest of the paper, we will present some properties of quasi-convex subsets, as
applications of the idea of Theorem 1.1 (and its equivalent versions—Corollary 1.2 and
Proposition 3.1).
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4 Connectedness of quasi-convex subsets

It is known that the number of extremal subsets in a compact space of Alex(k) is finite
(Proposition 3.6 in [3]). Unfortunately, there is no such strong conclusion on quasi-convex
subsets. For example, in a standard sphere, there are infinitely many great circles each
of which is quasi-convex. Nevertheless, we have a weaker conclusion for quasi-convex
subsets.

Proposition 4.1. In a compact space X € Alex(k), any quasi-convex subset has a finite number
of connected components.

In fact, we have the following stronger conclusion than Proposition 4.1 (which corre-
sponds to (2) of Corollary 3.2 in [3] for ‘extremal’ case).

Proposition 4.2. Let X be a compact space in Alex(k), and let F be a quasi-convex subset in X.
Then there is € >0 (depending on X) such that, for any two distinct points p,q € F with |pq| <€?,

there exists a curve in F jointing p and q with length bounded from above by \p?q\_

Moreover, we can see the following property which corresponds to Proposition 3.3
in [3] for ‘extremal’ case.

Proposition 4.3. Let F be a quasi-convex subset in an X € Alex(k), and let p € F and € X, F.
Then there exists a curve in F starting from p and tangent to the direction C.

In proving Propositions 4.1 and 4.2, the following lemma (Lemma 3.1 in [3]) is needed,
which is some kind of essential geometry of Alexandrov spaces with lower curvature
bound.

Lemma 4.1. Let X be a compact space in Alex(k). Then there is € > 0 (depending on X) such
that, for any two distinct points p,q € X with |pq| < €2, at least one of the following holds:

Wrgg§dist;|q(17)>e and q@§p§diSt;|p(U)>e'

where dist; |4(17) denotes the derivative of dist, (the distance function to p) at q along the direc-
tion 1.

Note that dist,[4(17) = —cos| 51| (by Lemma 2.2). Hence, by Proposition 3.1 (see (3.1)
and (3.2)) we can easily see the following property.

Lemma 4.2. In Lemma 4.1, if p,q lie in a quasi-convex subset F of X additionally, then

é{é\gﬁ_dist;\q(é)>e and 5@§§}d15t2|q(5)<_€'

or

./
max dist

. . !
max glp(8)>e and g?%?PdlStq’p(g)<_€'
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Lemma 4.2 corresponds to (1) of Corollary 3.2 in [3] for ‘extremal” case, where p and
g can lie in two distinct extremal subsets.

Since our proofs for Propositions 4.1 and 4.2 are imitations of their corresponding
versions for ‘extremal’ case in [3], we just provide rough proofs for them.

Proof of Proposition 4.1. Let F be a quasi-convex subset in X, and let F; and F, be two
connected components of F. It suffices to show that the distance between F; and F, is
bigger than €2, where € is the number associated to X satisfying Lemma 4.1. If this is not
true, then there is p € F; and g € F, such that |pq| =|F 2| < €? (note that X is compact and
F is closed in X). It then follows that

. . . .
grergprll:ldlstq\p(é)>0 and é{renzlqr}zdlstph(é)20,

which contradicts Lemma 4.2. O

Proof of Proposition 4.2. Let p,q be two distinct points in F. By Lemma 4.2, there is an €
such that if |pg| < €?, then

gélziﬁ?dist; 4(§)<—€e or érénzi?Fdist; |p(C) < —e.

Then, for each n €N, it is not hard to see that there are two sequences of points {p;}$*,
and {g;}°, (depending on n) in F with

either p;j=p;-1 and 0<|g;qi—1]< % or ¢i=gi—1 and 0<|ppi_1|< % (4.1)
(where pp=p and g9 =4g) such that
\pi-1gi-1]—|piqi| > e(|pi-1pil +19iqi-1]) (4.2)

and
|pigi| — 0 as i—oo. (4.3)

Let {pin,qin}:2, denote the above two point sequences corresponding to each n. Note
that

[ee]

Y (Ipicinpinl +19ingi-10]) < Ipal

. €

i=1
for all n. Hence, as n — co and passing to a subsequence of {n}, {p;.,qin}, converges
to a curve in F jointing p and g with length < \p?ql. O

Remark 4.1. In the proof of Proposition 4.2, for general {p;}, and {g,;}%2, satisfying
(4.1) and (4.2), it might occur that p; = p and q; — § as i — oo with p # 4. Note that,
|P4] <|pg| < €?, so similarly there is p’ and g’ in F with either p’=p and |g'g| <1 orq'=7
and |p'p| <1 such that |pg|—|p'q’| >€(|pp’|+|q'q]). Hence, for sufficiently large i, we can
reset p;=p;_1 and q;=¢’ or q;=¢q;_1 and p; =p’ so that the new p; and g; still satisfy (4.1)
and (4.2). Such an idea enables us to find {p;}?°, and {g;}$2, satisfying (4.1)-(4.3).
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As for Proposition 4.3, we can almost directly copy the proof of Proposition 3.3 in [3]
(here the basis is Lemma 4.2 instead of Corollary 3.2 in [3]). However, we would like to
provide a proof for it via Corollary 1.2 without involving Lemmas 4.2 and 4.1.

Proof of Proposition 4.3. Since ¢ € X, F, there is {p;}$>, C F such that p; — p and ;' = ¢ as
i — o00. Note that, for sufficiently small § >0, there is iy such that

APigy O .
AR |<5  foralli>i. (4.4)

Moreover, by Lemma 2.1, we can assume that

~ ) -
[ T5th|=Zixpy <3 forany [px],[py] C By (Ippiy ). (4.5)
In the rest of the proof, for any i > iy with |pp;| < |ppi,|, we will first construct an
arc-length parameterized curve «;(t) |t o7l C F with «;(0) = p; such that
€0 —

1140 ¢ <5 forallte[0,|pi§i”’].

And then we will show that, as i — oo, &;(t) converges to a curve we want.

In order to construct a;(t), we claim that, for any e < |pp;|, there is {z]}j\[:(f ) € F with
z1 = p; and a constant C such that

Ve PP ; . Ce
|zjzj11| <€, Z% |zjzj41| — , | <€ and  Zziy1ppi, <4ijPPio+W‘ijj+l‘-
j=

Note that, (4.4) implies that Z;z1pp;, <3 (by Toponogov’s Theorem) and | ﬂ?o ¢|<$. Then
(€)

taking into account (4.5), we can see that {z]}]l\if

We now verify the above claim. Since Zyp;pp;, < g and Zyppi,pi < % (note that |pp;| <
|pipi,|), we can assume that Zpp;p;, > 71 —6, and thus by Toponogov’s Theorem we have
that

converges to the desired «;(t) as € —0.

[ 50 | > 4.
By Corollary 1.2, the farthest direction &; to f}, in X, X belongs to %,,F. By Lemma 2.2

and Toponogov’s Theorem, the ‘farthest” property of ¢; implies that for any 7 Eﬁzo there
is ¢ Eﬂgi such that /1&n < 7. It then follows that

cos| 1}, 1y | > cos|gr| > cos|&ig|-cos| G| > cos|&ig | -cos Gy |

(note that, |;{|>|E; ﬂgi |>| ﬂﬁiﬂf,io | >m—6, and thus it holds that |¢;17| < 5), which implies
that
cos| fth, 1,0 | > —cos|&i 1! |, or equivalently, [ 5,10 [+&ifi° <. (4.6)
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Denote by z; the point p;, and note that ¢; € X, F. Then for any € < |pz1|, (4.6) together
with Lemma 2.2 implies that there is z; € F such that |z1z3| <€ and

kazlpi0+2kpiozlzz< TT+E. 4.7)

Let 2o, P, i, €57 satisfy | ppi,|=|ppiy|, |22Pi|=|22pis| and | pZ2|=|pz1|+[2122|. For a special
case of (4.7) where Zypz1pi,+ Zkpi,z1z2 < 7, we notice that ZZ,pp;, < Zxz1ppi, (< %) by
Alexandrov’s lemma (Lemma 2.5 in [2]), which implies ZpZop;, > m—¢6 (> 5). From

‘Lpzopi, > T, it follows that Zyzopp;, < ZZppj, (note that |pzo| <|pZa]), so
Zyzoppi, < Zxzappi, and  Zypzapi, > 7T—0. (4.8)

In general, it is not so hard to conclude that /2,pp;, < Zxz1ppi, + % |z122|, where C is a
constant depending only on |pp;,|. Then we can similarly see that

- - Ce ~
Lxzappiy, < LZ2pPiy < Lkz1pPiy + W |z1z2|  and  Zypzppi, > 0. 4.9)
1

Note that | £, &> 7 —J, which implies that |pz3| > |pz;| (by Lemma 2.2). Then based on
(4.8) and (4.9), we can similarly locate z; with j >3 one by one. Moreover, for a similar
reason in Remark 4.1, there is an N(€) such that

N(e)-1 .
Y lzzinl- |pl§“’| <e.
j=1
So far, the claim has been verified.
Note that, «;(t) converges to a curve «(t)| 0,7 with a(0) = p as i — oo (here, there
tel,—-

might be a need of passing to a subsequence, but in fact not; cf. Remark 4.2 below). We
just need to show that «(t) is tangent to ¢ at p. In fact, for any integer n>1, there is i, >y
such that | ﬂ;ﬂglﬁ | < %n for all i > i, (cf. (4.4)). Then we can similarly construct another

curve &;(t)] 0,0 C F with &;(0) = p; such that | ﬂf,i(t) g|< o™ forallte [O,Lgi”‘]. Note
A

te|

that z; can be chosen to ensure that &;(t)| =a;(t)] ; namely, for sufficiently

te[O,—lpiii”‘] te[O,—‘pig’“ ly

large i we have that

140 ¢ < 6" forall te [o,‘pl;’i"’].

This implies that | ﬂg(t) gl<o" forall te (O,%], i.e. a(t) is tangent to ¢ at p. O

Remark 4.2. We would like to point out that (4.8) and (4.9) are inspired by the proof of
Proposition 3.3 in [3]. Moreover, in the proof right above, «;(t) is in fact the beginning
part of the gradient curve of dist, starting from p;, and «a(t) is just the beginning part of
the radial curve starting from p with direction ¢ (Corollary 5.1 below).
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5 Gradient curve and its applications

5.1 Gradient and radial curves

In [4], and see also [1,5], semiconcave functions and their gradient curves have been
introduced on an X€Alex(k). A very important kind of semiconcave functions is distance
function. Let f:(0C X— R be a semiconcave function. The semiconcavity of f implies that,
atany pe (), either for any €%, X, f;(¢) <0 (where f,(¢) denotes the derivative of f at p
along the direction &), or there exists a unique ¢ € X, X such that f},(¢o) =max{f'(¢)[¢ €
Y., X} >0 (for details refer to [5]); then correspondingly, we can define the gradient vector
of f at p, denoted by V,f, to be 0 in the former cases, and V, f = f,(80)Co in the latter
cases. Given a point g € (), we consider a locally Lipschitz curve a: [0,tp) — Q C X with
«(0) =g satisfying that the right tangent vector a ™ () exists for all ¢ € [0,¢) and

at (t) = voc(t)f'

A gradient curve of f starting from g is such an a where ¢t is the maximum of all possible
to and fo might be +oo. It is of interest that the gradient curve a(t) of f starting from any
point r € () exists and is unique ([1, 16.15-18]). Here, if V,f =0, then «(t) will be just the
point r. If V, f#0, then there is a 6 >0 such that for any given e >0 we can select a sequence

: 1 Yy, o
of points r=po,p1, -, Pn. € X such that [ 15" \V%\ | <€, |pipir1]| <eand Yy pipi1] =0

Letting e —0" and passing to a subsequence, one can conclude that the sequence {p;},
converges to an arc-length parameterized curve, and then by reparameterizing it we can
obtain the desired gradient curve. From this construction, one can easily conclude that if

a closed subset F C X with r € F satisfies that % € L,;F for any g € F with V,;f #0, then

we can select the sequence {p;}', in F so that the corresponding gradient curve starting
from r falls in F. That is, the following holds.

Theorem 5.1. Let F be a closed subset in X € Alex(k). For a semiconcave function f defined on
a subset O C X, if % € XyF for any q € F with V, f #0, then the gradient curve of f starting
from any r€ FNQ lies in F.

Via Theorem 5.1 and Corollary 1.2, we can see the following important proposition
about quasi-convex subsets, in which we also call the gradient curve «(t) with t >0 and
«(0) =r the gradient flow from r, denoted by q)}(r).

Proposition 5.1. Let F be a closed subset in an X € Alex(k). Then F is quasi-convex if and only
if, for any two distinct points p,r € F, the gradient curve of dist, starting from r lies in F, or

equivalently, the gradient flow CIDQistp (r)€F forall t>0.

Proof. Note that the distance function dist, on X is semiconcave on X\ {p} [5]. If F is

quasi-convex, then V,dist, =0 if | fne | <7 for all ¢ € X, X by Lemma 2.2; otherwise,

‘g’j%"‘ coincides with the farthest direction to {}} by Lemma 2.2, and thus by Corollary
rdisty
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V., disty

1.2 we haVe that m

from r lies in F.
Conversely, if the gradient curve of dist, from r € F\{p} lies in F, then the farthest

€X,F. Then by Theorem 5.1, the gradient curve of dist, starting

direction ¢ €%, X to 1} satisfies |& 1)} | < % by Lemma 2.2 if V,dist, =0; otherwise, é:j%z'
belongs to =, F and is just the farthest direction to {}} by Lemma 2.2. Hence, F is quasi-
convex by Corollary 1.2. O

Moreover, given ¢ € £,X and {p;}°; with p; — p and 1}’ — & as i — oo, we can define
the radial curve starting from p with direction ¢ by the (reparameterized) limit of gradient
curves of dist, starting from p; (for details refer to [5]). Then Proposition 5.1 implies the
following corollary.

Corollary 5.1. Let F be a quasi-convex subset in an X € Alex(k). Then, for any p € F and any
¢ € Xy F, the radial curve starting from p with direction ¢ lies in F.

In Proposition 5.1, for ‘extremal’ case, p can be an arbitrary point in X. As another
corollary of Proposition 5.1, we can see that the limit of quasi-convex subsets is also quasi-
convex (refer to Lemma 4.1.3 in [5] for ‘extremal’ case).

Corollary 5.2. Let {X,}°° , be m-dimensional spaces in Alex(x), and let F, be quasi-convex in
X If X, SH, X with F,—FC X as n— oo, then F is also quasi-convex in X.

Proof. By Proposition 5.1, we just need to verify that, for any two distinct points p,r € F,
the gradient curve of dist, starting from r lies in F. Let py,r, € F, with p, > pand r, —r
as n—o0. Itis clear that dist,, converges to dist, as n— co. A fundamental fact is that the
gradient curve of dist,, starting from r,, converges to the gradient curve of dist, starting
from r (Lemma 2.1.5 in [5]). Due to the quasi-convexity of F,, the gradient curve of dist,,
starting from r,, lies in F,;, so the gradient curve of dist, starting from r lies in F. O

Remark 5.1. If X, converges to X without collapse (in the Gromov-Hausdorff sense) in
Corollary 5.2, then similar to ‘extremal” case (cf. Section 4.1 in [5]) one can show that F,
also converges to F with respect to induced intrinsic metrics from X,, and X.

In the rest of this section, we will provide three applications of Proposition 5.1.

5.2 Intersection of two quasi-convex subsets

Via Proposition 5.1, we can see that the intersection of two quasi-convex subsets is also
quasi-convex.

Proposition 5.2. Let F and G be two quasi-convex subsets in an X € Alex (k). Then FNG is also
quasi-convex in X; moreover, £,(FNG) =X,FNL,G for any pc FNG.
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Proof. Since F and G are quasi-convex in X, for any p,r € FNG with p #r, the gradient
curve of dist, starting from r belongs to both F and G (by Proposition 5.1), which implies
that FNG is also quasi-convex (by Proposition 5.1 again).

Next, for any p € FNG, we show that X,(FNG) =X,FNL,G. Itis obvious that X,(FN
G)C 2,FNZ,G. On the other hand, for any ¢ € X,FNX,G, the radial curve starting from
p with direction ¢ lies in FNG (by Corollary 5.1), which implies that X,(FNG) 2 X,FN
2,G. O

Remark 5.2. It is true that the union of two extremal subsets is also extremal [3]. How-
ever, in general, the union of two quasi-convex subsets might not be quasi-convex (e.g.,
the union of two lines in a plane is not quasi-convex).

Remark 5.3. Let F and G be two extremal subsets in an X € Alex(k). Without involv-
ing the concept of gradient curve, [3] has proven that both FNG and F\G are also ex-
tremal in X by showing X,(FNG) =X,FNX,G and X,F\G = %,F\X,G firstly. How-
ever, we cannot give a proof for Proposition 5.2 in such a way (because the condition of
‘quasi-convex’ is much weaker than ‘extremal’). Moreover, so far we cannot either show
%,F\G=X,F\X,G or prove that F\G is still quasi-convex if F and G are quasi-convex
in X with dim(X) > 3.

5.3 Quasi-convex subsets in spherical suspensions

Let Z= {z1,zp} Y with |z1z5| = 7t and Y € Alex(1) be a spherical suspension (for details
about such suspension structure refer to [2]). As examples of quasi-convex subsets, [6]
has shown that if a quasi-convex subset F in Z contains at least two points including z;,
then F={z1,z2}*(FNY). In this paper, we provide a short proof and a stronger version
of it via Proposition 5.1.

Proposition 5.3. Let Z={z1,zy }*Y with |z1zy| =7 and Y € Alex(1), and let F be a quasi-convex
subset in Z containing at least two points. Then either F CY, or there is Z1, Z, and Y € Alex(1)
with |Z1Z| = 7t such that Z ={21,Z, } xY and F={21,2,} *(FNY).

Proof. We first consider a special case where z; belongs to F. As mentioned above, F =
{z1,22} *(FNY) in this case. In fact, for any point r € F\ {21}, [rz2] is the gradient curve of
dist,, starting from 7 by the spherical suspension structure of Z, and thus has to lie in F by
Proposition 5.1. In particular, z € F. Similarly, if r#z,, then [rz1] also belongs to F; namely,
the minimal geodesic [z1z2] passing r belongs to F. This implies that F ={z3,z2} % (FNY).

We now can assume that zq € F, z, ¢ F and FN(Z\Y) #@. Then we can assume that
there is Z; € F and 2, € F such that £ > |z F| =|z121| <|z222| = |22F|. Note that [1213 [<Z
by the quasi-convexity of F. So, if |Z1Z2| < 71, then the spherical suspension structure of Z
guarantees that, for any [z122],

= 7'[ = =
[t4131<2 and [1312]=m- |13
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However, the quasi-convexity of F implies that | TZ 12 | <%, a contradiction. Namely,
it has to hold that |Z;Z2| = 7t (so z; and Z; lie in a (great) circle of perimeter 271). Hence,
there is Y € Alex(1) such that Z={z3,2,} *Y; and thus, similar to the special case above,
F:{21,22}*<FHY) L]

5.4 Fixed point set of an isometry

Proposition 5.4. Let X € Alex(k), and let F be the fixed point set of an isometry on X. Then F
is quasi-convex in X.

Recall that the fixed point set of an isometry on a complete Riemannian manifold is
totally geodesic, while a quasi-convex subset in a complete Riemannian manifold must
be totally geodesic [6].

Proof. We need only to consider the case where F contains at least two points. Let p and
r be arbitrary two distinct points in F. By the uniqueness of the gradient curve of dist,
starting from 7, it must be fixed by the isometry. Le., the gradient curve of dist, starting
from r belongs to F, so F is quasi-convex by Proposition 5.1. O

Remark 5.4. Let o be the isometry fixing F in Proposition 5.4, and let p € F. Note that
there is a naturally induced isometry 4 on ¥,X, and ¥, F belongs to the fixed point set
F of 4. On the other hand, by the uniqueness of radial curve starting from a point with
a fixed direction, ¢ must fix the radial curve starting from p with any direction ¢ € F.
Namely, ¥.,F =F.

Remark 5.5. Let X € Alex(k), and let I be a compact group which acts on X by isometries
with nonempty fixed point set F. In [3], it has been shown that F is extremal as a subset
of the orbit space X/I' (where a key tool is ‘strictly convex hull’). Based on this, [6] has
proven that F is quasi-convex in X. Note that we can prove it using the same arguments
as in the proof of Proposition 5.4. (We would like to point out that, using the technique
of strictly convex hull, one can also see that X, F = F in Remark 5.4.)
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