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Abstract. Let F be a closed subset in a finite dimensional Alexandrov space X with
lower curvature bound. This paper shows that F is quasi-convex if and only if, for any
two distinct points p,r∈ F, if there is a direction at p which is more than π

2 away from
⇑r

p (the set of all directions from p to r), then the farthest direction to ⇑r
p at p is tangent

to F. This implies that F is quasi-convex if and only if the gradient curve starting from
r of the distance function to p lies in F. As an application, we obtain that the fixed
point set of an isometry on X is quasi-convex.
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1 Introduction

Finite dimensional Alexandrov spaces with lower curvature bound can be viewed as a
generalization of Riemannian manifolds with lower sectional curvature bound [2]. Com-
pared to Riemannian manifolds, Alexandrov spaces might have some singularities, so
that some important subsets appear as some kinds of analogues of totally geodesic sub-
manifolds, such as convex subsets, extremal subsets and quasi-geodesics [3, 4]. Recently,
such a kind of subsets named quasi-convex subsets has been introduced [6]. They in-
clude not only all convex subsets without boundary and extremal subsets but also more
other subsets, such as fixed point sets of isometries on Alexandrov spaces. Moreover, all
shortest pathes in a quasi-convex subset are quasi-geodesics.

∗Corresponding author. Email addresses: suxiaole@bnu.edu.cn (Su X), 5598@cnu.edu.cn (Sun H),
wyusheng@bnu.edu.cn (Wang Y)
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To show the definition of quasi-convex subsets, we first make some conventions on
notations.
• Alex(k): the set of complete and finite dimensional Alexandrov spaces with curvature
⩾k.
• S2

k : the complete and simply connected space form of dimension 2 and curvature k.
• |pq|, [pq]: the distance, a minimal geodesic (i.e. shortest path) between p and q.
• ↑q

p: the direction from p to q for a given [pq].
• ⇑q

p: the set of all directions from p to q.
For a point p∈ X ∈Alex(k), we denote by ΣpX the space of directions of X at p which
belongs to Alex(1) [2] . In ΣpX, ⇑q

p is a closed subset, and |⇑q
p⇑r

p | is the distance between
⇑q

p and ⇑r
p. And to p,q,r ∈ X, we associate p̃,q̃,r̃ ∈ S2

k with | p̃q̃|= |pq|, | p̃r̃|= |pr| and
|q̃r̃|= |qr|†, and then we denote by ∠̃kqpr the angle at p̃ of the triangle △ p̃q̃r̃.

Definition 1.1 ([6]). In an X ∈ Alex(k), a closed subset F is called to be quasi-convex if the
following condition is satisfied: if the distance function to q ̸∈ F restricted to F, distq|F, attains a
minimum at p∈F, then for all r∈F\{p}

|⇑q
p⇑r

p |⩽
π

2
(or equivalently, ∠̃kqpr⩽

π

2
). (1.1)

Here, we make a convention that both the empty set and a single point are quasi-convex in X.

By Toponogov’s Theorem‡, it is obvious that ‘| ⇑q
p⇑r

p |⩽ π
2 ’ implies ‘∠̃kqpr ⩽ π

2 ’, but
not vice versa; however, they are equivalent to each other in the situation of Definition
1.1 [6]. Moreover, due to the arbitrariness of q, (1.1) is in fact equivalent to | ↑q

p⇑r
p |⩽ π

2 for
any [pq].

Remark 1.1. In this paper, we say that F is extremal in X if (1.1) holds for all r∈X\{p} in
Definition 1.1. This coincides with the concept ‘extremal’ in [3] if F contains at least two
points [6]. If F is the empty set or a single point and if k= 1, some extra conditions are
added in [3] for some kind of completeness ([6]).

Remark 1.2. In [6], locally quasi-convex subsets are also defined. In detail, a subset F in
an X∈Alex(k) is locally quasi-convex if for any x∈F there is a neighborhood Ux of x such
that Ux∩F is closed and if distq|F with q ̸∈ F attains a minimum at p ∈ F∩Ux, then the
corresponding (1.1) holds for all r∈ F∩Ux\{p}. In a complete Riemannian manifold, a
closed and locally quasi-convex subset must be a totally geodesic submanifold.

It is obvious that the quasi-convexity (as well as the extremality) of F is determined
by the geometry at points realizing minimums of distq|F with q /∈F. A natural question is
what is the essential geometry to a general point of F. The first result of this paper gives
an answer to it.

†If k>0 and |pq|= π√
k
, it is necessary to add a condition that r̃ lies in a geodesic [ p̃q̃].

‡For the theorem, one can refer to Section 3 in [2] (or Theorem 1.1 in [6]).
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Theorem 1.1. Let F be a closed subset in an X ∈Alex(k). Then F is quasi-convex in X if and
only if, for any two distinct points p,r∈F and η∈ΣpX, there is ζ∈⇑r

p and ξ∈ΣpF with |ηξ|⩽ π
2

such that
cos|ηζ|⩾cos|ηξ|cos|ζξ|; (1.2)

where if ΣpF=∅ (i.e. p is an isolated point of F), then (1.2) means that cos|ηζ|⩾0.

Note that, in Theorem 1.1, if η lies in ΣpF, then we can let ξ = η. And an alternative
formulation of (1.2) is ∠̃1ηξζ⩽ π

2 .

Remark 1.3. In Theorem 1.1, according to the proof of Theorem 1.1, if F is quasi-convex
in X, we can in fact select ξ with |ηξ|⩽ π

2 to satisfy a bit stronger version of (1.2):

cos|η⇑r
p |⩾cos|ηξ|cos|⇑r

p ξ|.

Restricted to ‘extremal’ case, Theorem 1.1 can be formulated as follows, which can be
seen almost obviously from the proof of Theorem 1.1.

Corollary 1.1. Let F be a closed subset in an X∈Alex(k). Then F is extremal in X if and only if,
for any p∈F and any η,ζ∈ΣpX, there is ξ∈ΣpF with |ηξ|⩽π

2 such that cos|ηζ|⩾cos|ηξ|cos|ζξ|
(which means that cos|ηζ|⩾0 if ΣpF=∅).

From Theorem 1.1, we can derive another equivalent condition of quasi-convexity,
which will be very helpful to see some nice properties of quasi-convex subsets.

Corollary 1.2. Let F be a closed subset in an X∈Alex(k). Then F is quasi-convex in X if and
only if, for any two distinct points p,r ∈ F, if there is η ∈ΣpX satisfying |η ⇑r

p |> π
2 , then the

farthest direction to ⇑r
p in ΣpX belongs to ΣpF.

Note that, the farthest direction ξ to ⇑r
p in ΣpX, i.e. |ξ ⇑r

p |=max{|ν⇑r
p | : ν∈ΣpX}, is

unique if the maximum is bigger than π
2 (by Toponogov’s Theorem). In Corollary 1.2, if

ΣpF=∅, then “if there is η∈ΣpX satisfying |η⇑r
p |> π

2 , then ...” means that |η⇑r
p |⩽ π

2 for
all η∈ΣpX. In Sections 3 and 5, we will present two equivalent versions of Corollary 1.2
(see Propositions 3.1 and 5.1).

Similarly, for ‘extremal’ case, Corollary 1.2 can be formulated as follows: In an X ∈
Alex(k), a closed subset F is extremal if and only if, for any p∈F and ζ∈ΣpX, if there is η∈ΣpX
satisfying |ηζ|> π

2 , then the farthest direction to ζ in ΣpX belongs to ΣpF. The necessity of the
extremality of F here can be seen from [3], and the sufficiency has been given in [5].

Remark 1.4. Based on Remark 1.2, one can give the corresponding versions of Theorem
1.1 and Corollary 1.2 (and Propositions 3.1 and 5.1) for local quasi-convexity.

Remark 1.5. Let F be a quasi-convex subset in X∈Alex(k). [6] has shown two important
properties of F. One is that ΣpF is also quasi-convex in ΣpX for any p∈F, and the other is
that a shortest path in F is a quasi-geodesic in X. They can be proven just from Definition
1.1 without involving the new viewpoints in Theorem 1.1 and Corollary 1.2.
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In the rest of the paper, we first give proofs of Theorem 1.1 and Corollary 1.2 in Sec-
tions 2 and 3. Then, as applications of them, we will show several properties of quasi-
convex subsets. For instance, two points in a quasi-convex subset can be jointed with a
curve in the subset if they are close sufficiently (see Section 4), and the intersection of two
quasi-convex subsets is also quasi-convex (see Section 5.2). Moreover, based on Corollary
1.2, we can illustrate quasi-convex subsets by gradient curves of distance functions (see
Section 5.1). This will make it easy to judge some kinds of subsets to be quasi-convex (see
Sections 5.2-5.4), such as the fixed point set of an isometry.

2 Proofs of Theorem 1.1 and Corollary 1.1

The main goal of this section is to give a proof for Theorem 1.1. In the proof, we will use
the following facts in Alexandrov geometry.

Lemma 2.1 ([2]). Let X∈Alex(k) and p∈X. Then for any small ϵ>0 there is a neighborhood
Uϵ of p such that, for any [pq],[pr],[qr]⊂Uϵ,

0⩽ | ↑q
p↑r

p |−∠̃kqpr<ϵ, 0⩽ | ↑p
q↑r

q |−∠̃k pqr<ϵ and 0⩽ | ↑p
r ↑

q
r |−∠̃k prq<ϵ.

Lemma 2.2 (The first variation formula [2]). Let X∈Alex(k), and let p,r,qi ∈X with qi → p
as i→∞. If there is [pqi] such that ↑qi

p converges to η (∈ΣpX) as i→∞, then

lim
i→∞

|qir|−|pr|
|pqi|

=−cos|⇑r
p η|.

As a result, limi→∞∠̃krpqi = |⇑r
p η|.

Proof of Theorem 1.1. We first show the necessity of the quasi-convexity in the theorem.
Note that we can let ξ = η if η ∈ ΣpF, so we can assume that η /∈ ΣpF. Then there is
qn∈X\F such that qn→ p and ↑qn

p →η as n→∞. Let pn∈F satisfy |qn pn|= |qnF|. Note that
pn → p as n→∞, and we can complete the proof according to the following two cases.

Case 1: there is at least a subsequence of {pn} which belongs to F\{p}. In this case, there
must be a subsequence {pni} with pni ̸= p such that ↑pni

p converges to some ξ ∈ ΣpF as
i→∞. We claim that |ηξ|⩽ π

2 and

cos|η⇑r
p |⩾cos|ηξ|cos|⇑r

p ξ|. (2.1)

This implies that there is ζ ∈⇑r
p such that (1.2) holds. So, we just need to verify the claim

in this case. For simpleness, we still denote by {pn} the subsequence {pni}. Since |qn pn|<
|qn p| and qn,pn → p as n→∞, by Lemma 2.1 it is easy to see that |ηξ|⩽ π

2 . For (2.1), due
to the similarity, we only give a proof for the case where k=0. By the quasi-convexity of
F, we have that

∠̃kqn pnr⩽
π

2
. (2.2)



26 Su X, Sun H and Wang Y / J. Math. Study, 58 (2025), pp. 22-37

Consequently, by the Law of Cosine, we have that

|rpn|2+|qn pn|2⩾ |qnr|2,

where

|rpn|2= |rp|2+|ppn|2−2|rp|·|ppn|·cos∠̃0rppn,

|qn pn|2= |qn p|2+|ppn|2−2|qn p|·|ppn|·cos∠̃0qn ppn,

|qnr|2= |qn p|2+|pr|2−2|qn p|·|pr|·cos∠̃0qn pr.

It then follows that

cos∠̃0rpqn⩾− |ppn|2
|pqn|·|pr|+

|ppn|
|pqn|

cos∠̃0rppn+
|ppn|
|pr| cos∠̃0qn ppn. (2.3)

Since qn,pn → p, ↑qn
p →η and ↑pn

p → ξ as n→∞, by Lemma 2.2 we have that

∠̃0rpqn →|⇑r
p η| and ∠̃0rppn →|⇑r

p ξ| as n→∞. (2.4)

Moreover, we make a subclaim:

lim
n→∞

|ppn|
|pqn|

=cos|ηξ|. (2.5)

Note that (2.3)-(2.5) together with |ppn|
|pr| → 0 as n → ∞ implies (2.1). In order to see the

subclaim, by Lemma 2.1 it suffices to show that there is [pnqn] and [pn p] such that |↑qn
pn↑

p
pn

|→ π
2 as n→∞. By the quasi-convexity of F, there is [pnqn], [pn p] and [pn pm] with m ̸=n

such that
| ↑qn

pn↑
p
pn |⩽

π

2
and | ↑qn

pn↑
pm
pn |⩽

π

2
.

On the other hand, since pn→p and ↑pn
p →ξ as n→∞, it is not hard to see that |↑p

pn↑
pm
pn |→π

where n≫m and m→∞ (by Toponogov’s Theorem), which implies

| ↑qn
pn↑

p
pn |+| ↑qn

pn↑
pm
pn |→π.

It therefore follows that | ↑qn
pn↑

p
pn | → π

2 as n → ∞ (i.e. the subclaim is verified, so is the
claim).

Case 2: pn= p for all large n. In this case, the quasi-convexity of F guarantees that |⇑qn
p ⇑r

p

|⩽ π
2 , and thus |η⇑r

p |⩽ π
2 (note that ‘qn → p and ↑qn

p →η’ implies ⇑qn
p →η, [2]). I.e., there is

ζ ∈⇑r
p such that cos|ηζ|⩾0, so the proof of the necessity is done if ΣpF=∅. If ΣpF ̸=∅,

we claim that

| ↑qn
p ξ|= π

2
for any ξ∈ΣpF,
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which implies |ηξ|= π
2 . In fact, we have that | ↑qn

p ξ|⩾ π
2 because |qn p|= |qnF| (by Lemma

2.2), and meanwhile | ↑qn
p ξ|⩽ π

2 (by the quasi-convexity of F). Note that the claim right
above implies that any ξ∈ΣpF satisfies (1.2), and thus the proof of the necessity is done.

Next, we will verify the sufficiency of the quasi-convexity in Theorem 1.1. We argue
by contradiction. Suppose that F is not quasi-convex in X. Then there exists q ̸∈ F and
p,r∈F such that |qp|= |qF|, but for some [qp] we have that

| ↑q
p⇑r

p |>
π

2
. (2.6)

We let η≜↑q
p. By the assumption, there is ζ∈⇑r

p and ξ∈ΣpF with |ηξ|⩽ π
2 such that

cos|ηζ|⩾cos|ηξ|·cos|ζξ|.

Note that ‘|ηζ|> π
2 ’ (see (2.6)) together with ‘|ηξ|⩽ π

2 ’ implies that |ηξ| must be less than
π
2 . However, since |qp|= |qF|, by Lemma 2.2 we have that |ηξ|⩾ π

2 , a contradiction.

By restricting the above proof to ‘extremal’ case, we can easily derive Corollary 1.1.

Proof of Corollary 1.1. If ζ is the direction of some [pr] at p (here r is not needed to lie in F),
one just need to replace all ‘quasi-convexity’ with ‘extremality’ in the proof of Theorem
1.1. Then for the case where ζ cannot be realized by a minimal geodesic, we can draw the
conclusion by a limiting argument (note that there is [pri] with ri → p as i→∞ such that
↑ri

p→ ζ).

Remark 2.1. Similar to Corollary 1.1, if F is a nonempty quasi-convex subset in X ∈
Alex(k), and if ΣpF ̸= ∅ with p ∈ F, then for any η ∈ ΣpX and ζ ∈ ΣpF there is ξ ∈ ΣpF
with |ηξ|⩽ π

2 such that cos|ηζ|⩾ cos|ηξ|cos|ζξ| (by Theorem 1.1). However, the con-
verse might not be true (as an example, one can consider a submanifold in a Riemannian
manifold which is not totally geodesic).

3 Proof of Corollary 1.2

In this section, we will first prove Corollary 1.2, and then show an alternative version of
it.

Proof of Corollary 1.2. We first verify the necessity of the quasi-convexity in the corollary.
Let p,r∈F. Since there is η∈ΣpX such that |η⇑r

p |> π
2 , the farthest direction ξ0 to ⇑r

p in ΣpX
is unique and |ξ0⇑r

p |> π
2 . By Theorem 1.1 (and Remark 1.3, see (2.1)), the quasi-convexity

of F implies that there is ξ∈ΣpF with |ξ0ξ|⩽ π
2 such that

cos|ξ0⇑r
p |⩾cos|ξ0ξ|cos|⇑r

p ξ|.

Note that ‘|ξ0 ⇑r
p |> π

2 ’, ‘|ξ0 ⇑r
p |⩾ |ξ ⇑r

p |’ and ‘|ξ0ξ|⩽ π
2 ’ imply that ξ0 has to be equal to ξ,

so it follows that ξ0∈ΣpF.
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Next, we will verify the sufficiency, and argue by contradiction. Suppose that F is not
quasi-convex in X. Then there exists q ̸∈ F and p,r∈ F such that |qp|= |qF|, but for some
[qp] we have that

|⇑r
p↑

q
p |>

π

2
.

Hence, by the assumption, the farthest direction ξ to ⇑r
p in ΣpX belongs to ΣpF. We claim

that | ↑q
p ξ|< π

2 , which contradicts ‘|qp|= |qF|’ (by Lemma 2.2). In fact, if | ↑q
p ξ|⩾ π

2 , by
Toponogov’s Theorem it is not hard to see that | ⇑r

p ξ ′|> | ⇑r
p ξ| for ξ ′ near ξ in any [↑q

p ξ]

because | ⇑r
p↑

q
p |> π

2 and | ⇑r
p ξ|⩾ | ⇑r

p↑
q
p |> π

2 ; a contradiction (because ξ is the farthest
direction to ⇑r

p).

We now provide an alternative version of Corollary 1.2, which will be used in next
section. We formulate it in the following proposition.

Proposition 3.1. Let F be a closed subset in an X∈Alex(k). Then F is quasi-convex in X if and
only if, for any two distinct points p,r∈ F, if η∈ΣpX satisfies −cos| ⇑r

p η|>0, then there exists
ξ∈ΣpF such that

−cos|⇑r
p ξ|⩾−cos|⇑r

p η|. (3.1)

Moreover, when F is quasi-convex and −cos| ⇑r
p η|> 0, the ξ in (3.1) can be chosen to satisfy

cos|ηξ|⩾−cos|⇑r
p η|; as a result, there is ξ ′∈ΣpF such that

cos|⇑r
p ξ ′|⩾−cos|⇑r

p η|. (3.2)

Proof. Note that the first statement is an alternative formulation of Corollary 1.2. So, we
just need to verify the second one. Assume that F is quasi-convex and η ∈ΣpX satisfies
−cos|⇑r

p η|>0. By Theorem 1.1, there is ζ∈⇑r
p and ξ∈ΣpF with |ηξ|⩽ π

2 such that

cos|ηζ|⩾cos|ηξ|cos|ζξ|.

This implies that cos|ηξ|⩾−cos|⇑r
p η| because −cos|ηζ|⩾−cos|⇑r

p η|>0 and cos|ηξ|⩾0.
We next show that there is ξ ′∈ΣpF such that (3.2) holds. Note that there is a sequence

of ri ∈ F such that ri → p and ⇑ri
p→ ξ as i→∞. And for any ζ ∈⇑r

p, by replacing ⇑r
p and

η with ⇑ri
p and ζ respectively, we can conclude that there is ξi ∈ΣpF such that cos|ζξi|⩾

−cos| ⇑ri
p ζ|, which implies cos| ⇑r

p ξi|⩾−cos| ⇑r
p⇑

ri
p |. Thereby, for the limit ξ ′ of any

converging subsequence of {ξi} (note that ΣpF is a closed subset in ΣpX), we have that
cos|⇑r

p ξ ′|⩾−cos|⇑r
p ξ|⩾−cos|⇑r

p η|.

Remark 3.1. By replacing ⇑r
p with any ζ ∈ΣpX in Proposition 3.1, we can get the corre-

sponding version of the proposition for ‘extremal’ case. Here, the existences of ξ and ξ ′

by the extremality of F can be seen from Proposition 1.6 in [3].

In the rest of the paper, we will present some properties of quasi-convex subsets, as
applications of the idea of Theorem 1.1 (and its equivalent versions—Corollary 1.2 and
Proposition 3.1).
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4 Connectedness of quasi-convex subsets

It is known that the number of extremal subsets in a compact space of Alex(k) is finite
(Proposition 3.6 in [3]). Unfortunately, there is no such strong conclusion on quasi-convex
subsets. For example, in a standard sphere, there are infinitely many great circles each
of which is quasi-convex. Nevertheless, we have a weaker conclusion for quasi-convex
subsets.

Proposition 4.1. In a compact space X∈Alex(k), any quasi-convex subset has a finite number
of connected components.

In fact, we have the following stronger conclusion than Proposition 4.1 (which corre-
sponds to (2) of Corollary 3.2 in [3] for ‘extremal’ case).

Proposition 4.2. Let X be a compact space in Alex(k), and let F be a quasi-convex subset in X.
Then there is ϵ>0 (depending on X) such that, for any two distinct points p,q∈F with |pq|<ϵ2,
there exists a curve in F jointing p and q with length bounded from above by |pq|

ϵ .

Moreover, we can see the following property which corresponds to Proposition 3.3
in [3] for ‘extremal’ case.

Proposition 4.3. Let F be a quasi-convex subset in an X∈Alex(k), and let p∈ F and ξ ∈ΣpF.
Then there exists a curve in F starting from p and tangent to the direction ξ.

In proving Propositions 4.1 and 4.2, the following lemma (Lemma 3.1 in [3]) is needed,
which is some kind of essential geometry of Alexandrov spaces with lower curvature
bound.

Lemma 4.1. Let X be a compact space in Alex(k). Then there is ϵ> 0 (depending on X) such
that, for any two distinct points p,q∈X with |pq|<ϵ2, at least one of the following holds:

max
η∈ΣqX

dist′p |q(η)>ϵ and max
η∈ΣpX

dist′q |p(η)>ϵ,

where dist′p |q(η) denotes the derivative of distp (the distance function to p) at q along the direc-
tion η.

Note that dist′p|q(η)=−cos|⇑p
q η| (by Lemma 2.2). Hence, by Proposition 3.1 (see (3.1)

and (3.2)) we can easily see the following property.

Lemma 4.2. In Lemma 4.1, if p,q lie in a quasi-convex subset F of X additionally, then

max
ξ∈Σq F

dist′p|q(ξ)>ϵ and min
ξ∈Σq F

dist′p|q(ξ)<−ϵ,

or
max
ξ∈Σp F

dist′q|p(ξ)>ϵ and min
ξ∈Σp F

dist′q|p(ξ)<−ϵ.
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Lemma 4.2 corresponds to (1) of Corollary 3.2 in [3] for ‘extremal’ case, where p and
q can lie in two distinct extremal subsets.

Since our proofs for Propositions 4.1 and 4.2 are imitations of their corresponding
versions for ‘extremal’ case in [3], we just provide rough proofs for them.

Proof of Proposition 4.1. Let F be a quasi-convex subset in X, and let F1 and F2 be two
connected components of F. It suffices to show that the distance between F1 and F2 is
bigger than ϵ2, where ϵ is the number associated to X satisfying Lemma 4.1. If this is not
true, then there is p∈F1 and q∈F2 such that |pq|= |F1F2|<ϵ2 (note that X is compact and
F is closed in X). It then follows that

min
ξ∈Σp F1

dist′q|p(ξ)⩾0 and min
ξ∈Σq F2

dist′p|q(ξ)⩾0,

which contradicts Lemma 4.2.

Proof of Proposition 4.2. Let p,q be two distinct points in F. By Lemma 4.2, there is an ϵ
such that if |pq|<ϵ2, then

min
ξ∈ΣqF

dist′p |q(ξ)<−ϵ or min
ξ∈ΣpF

dist′q |p(ξ)<−ϵ.

Then, for each n∈N+, it is not hard to see that there are two sequences of points {pi}∞
i=1

and {qi}∞
i=1 (depending on n) in F with

either pi = pi−1 and 0< |qiqi−1|<
1
n

or qi =qi−1 and 0< |pi pi−1|<
1
n

(4.1)

(where p0= p and q0=q) such that

|pi−1qi−1|−|piqi|>ϵ(|pi−1 pi|+|qiqi−1|) (4.2)

and
|piqi|→0 as i→∞. (4.3)

Let {pi,n,qi,n}∞
i=0 denote the above two point sequences corresponding to each n. Note

that
∞

∑
i=1

(|pi−1,n pi,n|+|qi,nqi−1,n|)<
|pq|

ϵ

for all n. Hence, as n→∞ and passing to a subsequence of {n}, {pi,n,qi,n}∞
i=0 converges

to a curve in F jointing p and q with length ⩽ |pq|
ϵ .

Remark 4.1. In the proof of Proposition 4.2, for general {pi}∞
i=1 and {qi}∞

i=1 satisfying
(4.1) and (4.2), it might occur that pi → p̄ and qi → q̄ as i → ∞ with p̄ ̸= q̄. Note that,
| p̄q̄|< |pq|<ϵ2, so similarly there is p′ and q′ in F with either p′= p̄ and |q′q̄|< 1

n or q′= q̄
and |p′ p̄|< 1

n such that | p̄q̄|−|p′q′|>ϵ(| p̄p′|+|q′q̄|). Hence, for sufficiently large i, we can
reset pi = pi−1 and qi =q′ or qi =qi−1 and pi = p′ so that the new pi and qi still satisfy (4.1)
and (4.2). Such an idea enables us to find {pi}∞

i=1 and {qi}∞
i=1 satisfying (4.1)-(4.3).
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As for Proposition 4.3, we can almost directly copy the proof of Proposition 3.3 in [3]
(here the basis is Lemma 4.2 instead of Corollary 3.2 in [3]). However, we would like to
provide a proof for it via Corollary 1.2 without involving Lemmas 4.2 and 4.1.

Proof of Proposition 4.3. Since ξ ∈ΣpF, there is {pi}∞
i=1 ⊂ F such that pi → p and ⇑pi

p → ξ as
i→∞. Note that, for sufficiently small δ>0, there is i0 such that

|⇑pi
p ⇑

pi0
p |< δ

3
for all i> i0. (4.4)

Moreover, by Lemma 2.1, we can assume that

| ↑x
p↑

y
p |−∠̃kxpy<

δ

3
for any [px],[py]⊂Bp(|ppi0 |). (4.5)

In the rest of the proof, for any i > i0 with |ppi| ≪ |ppi0 |, we will first construct an
arc-length parameterized curve αi(t)|

t∈[0,
|pi pi0

|
2 ]

⊂F with αi(0)= pi such that

|⇑αi(t)
p ξ|<δ for all t∈ [0,

|pi pi0 |
2

].

And then we will show that, as i→∞, αi(t) converges to a curve we want.
In order to construct αi(t), we claim that, for any ϵ≪|ppi|, there is {zj}N(ϵ)

j=1 ⊂ F with
z1= pi and a constant C such that

|zjzj+1|<ϵ,

∣∣∣∣∣N(ϵ)−1

∑
j=1

|zjzj+1|−
|pi pi0 |

2

∣∣∣∣∣<ϵ and ∠̃kzj+1 ppi0 < ∠̃kzj ppi0+
Cϵ

|ppi|
|zjzj+1|.

Note that, (4.4) implies that ∠̃kz1 ppi0<
δ
3 (by Toponogov’s Theorem) and |⇑pi0

p ξ|⩽ δ
3 . Then

taking into account (4.5), we can see that {zj}N(ϵ)
j=1 converges to the desired αi(t) as ϵ→0.

We now verify the above claim. Since ∠̃k pi ppi0 <
δ
3 and ∠̃k ppi0 pi≪ δ

3 (note that |ppi|≪
|pi pi0 |), we can assume that ∠̃k ppi pi0 >π−δ, and thus by Toponogov’s Theorem we have
that

|⇑p
pi⇑

pi0
pi |>π−δ.

By Corollary 1.2, the farthest direction ξi to ⇑p
pi in Σpi X belongs to Σpi F. By Lemma 2.2

and Toponogov’s Theorem, the ‘farthest’ property of ξi implies that for any η∈⇑pi0
pi there

is ζ∈⇑p
pi such that ∠̃1ζξiη⩽ π

2 . It then follows that

cos|⇑p
pi⇑

pi0
pi |⩾cos|ζη|⩾cos|ξiζ|·cos|ξiη|⩾cos|ξiζ|·cos|ξi ⇑

pi0
pi |

(note that, |ξiζ|⩾|ξi⇑
p
pi |⩾|⇑p

pi⇑
pi0
pi |>π−δ, and thus it holds that |ξiη|< π

2 ), which implies
that

cos|⇑p
pi⇑

pi0
pi |⩾−cos|ξi ⇑

pi0
pi |, or equivalently, |⇑p

pi⇑
pi0
pi |+|ξi ⇑

pi0
pi |⩽π. (4.6)
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Denote by z1 the point pi, and note that ξi ∈Σz1 F. Then for any ϵ≪|pz1|, (4.6) together
with Lemma 2.2 implies that there is z2∈F such that |z1z2|<ϵ and

∠̃k pz1 pi0+∠̃k pi0 z1z2<π+ϵ. (4.7)

Let z̄2, p̄, p̄i0∈S2
k satisfy | p̄ p̄i0 |=|ppi0 |, |z̄2 p̄i0 |=|z2 pi0 | and | p̄z̄2|=|pz1|+|z1z2|. For a special

case of (4.7) where ∠̃k pz1 pi0+∠̃k pi0 z1z2 ⩽π, we notice that ∠z̄2 p̄ p̄i0 ⩽∠̃kz1 ppi0 (< δ
3 ) by

Alexandrov’s lemma (Lemma 2.5 in [2]), which implies ∠p̄z̄2 p̄i0 > π−δ (> π
2 ). From

‘∠p̄z̄2 p̄i0 >
π
2 ’, it follows that ∠̃kz2 ppi0 ⩽∠z̄2 p̄ p̄i0 (note that |pz2|⩽ | p̄z̄2|), so

∠̃kz2 ppi0 < ∠̃kz1 ppi0 and ∠̃k pz2 pi0 >π−δ. (4.8)

In general, it is not so hard to conclude that ∠z̄2 p̄ p̄i0 < ∠̃kz1 ppi0+
Cϵ
|ppi | |z1z2|, where C is a

constant depending only on |ppi0 |. Then we can similarly see that

∠̃kz2 ppi0 ⩽∠z̄2 p̄ p̄i0 < ∠̃kz1 ppi0+
Cϵ

|ppi|
|z1z2| and ∠̃k pz2 pi0 >π−δ. (4.9)

Note that |⇑p
z1 ξi|>π−δ, which implies that |pz2|> |pz1| (by Lemma 2.2). Then based on

(4.8) and (4.9), we can similarly locate zj with j⩾ 3 one by one. Moreover, for a similar
reason in Remark 4.1, there is an N(ϵ) such that∣∣∣∣∣N(ϵ)−1

∑
j=1

|zjzj+1|−
|pi pi0 |

2

∣∣∣∣∣<ϵ.

So far, the claim has been verified.
Note that, αi(t) converges to a curve α(t)|

t∈[0,
|ppi0

|
2 ]

with α(0)= p as i→∞ (here, there

might be a need of passing to a subsequence, but in fact not; cf. Remark 4.2 below). We
just need to show that α(t) is tangent to ξ at p. In fact, for any integer n>1, there is in≫ i0
such that | ⇑pi

p ⇑
pin
p |< δn

3 for all i> in (cf. (4.4)). Then we can similarly construct another

curve ᾱi(t)|t∈[0,
|pi pin |

2 ]
⊂ F with ᾱi(0)= pi such that | ⇑ᾱi(t)

p ξ|< δn for all t∈ [0, |pi pin |
2 ]. Note

that zj can be chosen to ensure that ᾱi(t)|t∈[0,
|pi pin |

2 ]
=αi(t)|t∈[0,

|pi pin |
2 ]

; namely, for sufficiently

large i we have that

|⇑αi(t)
p ξ|<δn for all t∈ [0,

|pi pin |
2

].

This implies that |⇑α(t)
p ξ|<δn for all t∈ (0, |ppin |

2 ], i.e. α(t) is tangent to ξ at p.

Remark 4.2. We would like to point out that (4.8) and (4.9) are inspired by the proof of
Proposition 3.3 in [3]. Moreover, in the proof right above, αi(t) is in fact the beginning
part of the gradient curve of distp starting from pi, and α(t) is just the beginning part of
the radial curve starting from p with direction ξ (Corollary 5.1 below).
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5 Gradient curve and its applications

5.1 Gradient and radial curves

In [4], and see also [1, 5], semiconcave functions and their gradient curves have been
introduced on an X∈Alex(k). A very important kind of semiconcave functions is distance
function. Let f :Ω⊂X→R be a semiconcave function. The semiconcavity of f implies that,
at any p∈Ω, either for any ξ∈ΣpX, f ′p(ξ)⩽0 (where f ′p(ξ) denotes the derivative of f at p
along the direction ξ), or there exists a unique ξ0∈ΣpX such that f ′p(ξ0)=max{ f ′(ξ)|ξ∈
ΣpX}>0 (for details refer to [5]); then correspondingly, we can define the gradient vector
of f at p, denoted by ∇p f , to be 0 in the former cases, and ∇p f = f ′p(ξ0)ξ0 in the latter
cases. Given a point q∈Ω, we consider a locally Lipschitz curve α : [0,t0)→Ω⊂X with
α(0)=q satisfying that the right tangent vector α+(t) exists for all t∈ [0,t0) and

α+(t)=∇α(t) f .

A gradient curve of f starting from q is such an α where t0 is the maximum of all possible
t0 and t0 might be +∞. It is of interest that the gradient curve α(t) of f starting from any
point r∈Ω exists and is unique ([1, 16.15-18]). Here, if ∇r f =0, then α(t) will be just the
point r. If ∇r f ̸=0, then there is a δ>0 such that for any given ϵ>0 we can select a sequence
of points r= p0,p1,··· ,pnϵ ∈X such that | ↑pi+1

pi

∇pi f
|∇pi f | |<ϵ, |pi pi+1|<ϵ and ∑nϵ−1

i=0 |pi pi+1|⩾δ.

Letting ϵ→0+ and passing to a subsequence, one can conclude that the sequence {pi}nϵ
i=1

converges to an arc-length parameterized curve, and then by reparameterizing it we can
obtain the desired gradient curve. From this construction, one can easily conclude that if
a closed subset F⊂X with r∈ F satisfies that ∇q f

|∇q f | ∈ΣqF for any q∈ F with ∇q f ̸=0, then

we can select the sequence {pi}nϵ
i=1 in F so that the corresponding gradient curve starting

from r falls in F. That is, the following holds.

Theorem 5.1. Let F be a closed subset in X∈Alex(k). For a semiconcave function f defined on
a subset Ω⊂X, if ∇q f

|∇q f | ∈ΣqF for any q∈ F with ∇q f ̸=0, then the gradient curve of f starting
from any r∈F∩Ω lies in F.

Via Theorem 5.1 and Corollary 1.2, we can see the following important proposition
about quasi-convex subsets, in which we also call the gradient curve α(t) with t⩾0 and
α(0)= r the gradient flow from r, denoted by Φt

f (r).

Proposition 5.1. Let F be a closed subset in an X∈Alex(k). Then F is quasi-convex if and only
if, for any two distinct points p,r ∈ F, the gradient curve of distp starting from r lies in F, or
equivalently, the gradient flow Φt

distp
(r)∈F for all t⩾0.

Proof. Note that the distance function distp on X is semiconcave on X\{p} [5]. If F is
quasi-convex, then ∇rdistp = 0 if | ⇑p

r ξ|⩽ π
2 for all ξ ∈ ΣrX by Lemma 2.2; otherwise,

∇rdistp
|∇rdistp| coincides with the farthest direction to ⇑p

r by Lemma 2.2, and thus by Corollary
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1.2 we have that ∇rdistp
|∇rdistp| ∈ΣrF. Then by Theorem 5.1, the gradient curve of distp starting

from r lies in F.
Conversely, if the gradient curve of distp from r ∈ F\{p} lies in F, then the farthest

direction ξ∈ΣrX to ⇑p
r satisfies |ξ⇑p

r |⩽ π
2 by Lemma 2.2 if ∇rdistp=0; otherwise, ∇rdistp

|∇rdistp|
belongs to ΣrF and is just the farthest direction to ⇑p

r by Lemma 2.2. Hence, F is quasi-
convex by Corollary 1.2.

Moreover, given ξ ∈ΣpX and {pi}∞
i=1 with pi → p and ⇑pi

p → ξ as i→∞, we can define
the radial curve starting from p with direction ξ by the (reparameterized) limit of gradient
curves of distp starting from pi (for details refer to [5]). Then Proposition 5.1 implies the
following corollary.

Corollary 5.1. Let F be a quasi-convex subset in an X∈Alex(k). Then, for any p∈ F and any
ξ∈ΣpF, the radial curve starting from p with direction ξ lies in F.

In Proposition 5.1, for ‘extremal’ case, p can be an arbitrary point in X. As another
corollary of Proposition 5.1, we can see that the limit of quasi-convex subsets is also quasi-
convex (refer to Lemma 4.1.3 in [5] for ‘extremal’ case).

Corollary 5.2. Let {Xn}∞
n=1 be m-dimensional spaces in Alex(κ), and let Fn be quasi-convex in

Xn. If Xn
GH−→X with Fn →F⊂X as n→∞, then F is also quasi-convex in X.

Proof. By Proposition 5.1, we just need to verify that, for any two distinct points p,r∈ F,
the gradient curve of distp starting from r lies in F. Let pn,rn ∈ Fn with pn → p and rn → r
as n→∞. It is clear that distpn converges to distp as n→∞. A fundamental fact is that the
gradient curve of distpn starting from rn converges to the gradient curve of distp starting
from r (Lemma 2.1.5 in [5]). Due to the quasi-convexity of Fn, the gradient curve of distpn

starting from rn lies in Fn, so the gradient curve of distp starting from r lies in F.

Remark 5.1. If Xn converges to X without collapse (in the Gromov-Hausdorff sense) in
Corollary 5.2, then similar to ‘extremal’ case (cf. Section 4.1 in [5]) one can show that Fn
also converges to F with respect to induced intrinsic metrics from Xn and X.

In the rest of this section, we will provide three applications of Proposition 5.1.

5.2 Intersection of two quasi-convex subsets

Via Proposition 5.1, we can see that the intersection of two quasi-convex subsets is also
quasi-convex.

Proposition 5.2. Let F and G be two quasi-convex subsets in an X∈Alex(k). Then F∩G is also
quasi-convex in X; moreover, Σp(F∩G)=ΣpF∩ΣpG for any p∈F∩G.
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Proof. Since F and G are quasi-convex in X, for any p,r ∈ F∩G with p ̸= r, the gradient
curve of distp starting from r belongs to both F and G (by Proposition 5.1), which implies
that F∩G is also quasi-convex (by Proposition 5.1 again).

Next, for any p∈F∩G, we show that Σp(F∩G)=ΣpF∩ΣpG. It is obvious that Σp(F∩
G)⊆ΣpF∩ΣpG. On the other hand, for any ξ∈ΣpF∩ΣpG, the radial curve starting from
p with direction ξ lies in F∩G (by Corollary 5.1), which implies that Σp(F∩G)⊇ΣpF∩
ΣpG.

Remark 5.2. It is true that the union of two extremal subsets is also extremal [3]. How-
ever, in general, the union of two quasi-convex subsets might not be quasi-convex (e.g.,
the union of two lines in a plane is not quasi-convex).

Remark 5.3. Let F and G be two extremal subsets in an X ∈ Alex(k). Without involv-
ing the concept of gradient curve, [3] has proven that both F∩G and F\G are also ex-
tremal in X by showing Σp(F∩G) = ΣpF∩ΣpG and ΣpF\G = ΣpF\ΣpG firstly. How-
ever, we cannot give a proof for Proposition 5.2 in such a way (because the condition of
‘quasi-convex’ is much weaker than ‘extremal’). Moreover, so far we cannot either show
ΣpF\G=ΣpF\ΣpG or prove that F\G is still quasi-convex if F and G are quasi-convex
in X with dim(X)⩾3.

5.3 Quasi-convex subsets in spherical suspensions

Let Z≜{z1,z2}∗Y with |z1z2|=π and Y∈Alex(1) be a spherical suspension (for details
about such suspension structure refer to [2]). As examples of quasi-convex subsets, [6]
has shown that if a quasi-convex subset F in Z contains at least two points including z1,
then F= {z1,z2}∗(F∩Y). In this paper, we provide a short proof and a stronger version
of it via Proposition 5.1.

Proposition 5.3. Let Z={z1,z2}∗Y with |z1z2|=π and Y∈Alex(1), and let F be a quasi-convex
subset in Z containing at least two points. Then either F⊆Y, or there is z̄1, z̄2 and Ȳ∈Alex(1)
with |z̄1z̄2|=π such that Z={z̄1, z̄2}∗Ȳ and F={z̄1, z̄2}∗(F∩Ȳ).

Proof. We first consider a special case where z1 belongs to F. As mentioned above, F=
{z1,z2}∗(F∩Y) in this case. In fact, for any point r∈F\{z1}, [rz2] is the gradient curve of
distz1 starting from r by the spherical suspension structure of Z, and thus has to lie in F by
Proposition 5.1. In particular, z2∈F. Similarly, if r ̸=z2, then [rz1] also belongs to F; namely,
the minimal geodesic [z1z2] passing r belongs to F. This implies that F={z1,z2}∗(F∩Y).

We now can assume that z1 ̸∈ F, z2 ̸∈ F and F∩(Z\Y) ̸=∅. Then we can assume that
there is z̄1∈F and z̄2∈F such that π

2 > |z1F|= |z1z̄1|⩽ |z2z̄2|= |z2F|. Note that | ↑z̄2
z̄1
↑z1

z̄1
|⩽ π

2
by the quasi-convexity of F. So, if |z̄1z̄2|<π, then the spherical suspension structure of Z
guarantees that, for any [z̄1z̄2],

| ↑z̄1
z̄2
↑z1

z̄2
|< π

2
and | ↑z̄1

z̄2
↑z2

z̄2
|=π−|↑z̄1

z̄2
↑z1

z̄2
|.
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However, the quasi-convexity of F implies that | ↑z̄1
z̄2
↑z2

z̄2
|⩽ π

2 , a contradiction. Namely,
it has to hold that |z̄1z̄2|=π (so zi and z̄i lie in a (great) circle of perimeter 2π). Hence,
there is Ȳ∈Alex(1) such that Z={z̄1, z̄2}∗Ȳ; and thus, similar to the special case above,
F={z̄1, z̄2}∗(F∩Ȳ).

5.4 Fixed point set of an isometry

Proposition 5.4. Let X∈Alex(k), and let F be the fixed point set of an isometry on X. Then F
is quasi-convex in X.

Recall that the fixed point set of an isometry on a complete Riemannian manifold is
totally geodesic, while a quasi-convex subset in a complete Riemannian manifold must
be totally geodesic [6].

Proof. We need only to consider the case where F contains at least two points. Let p and
r be arbitrary two distinct points in F. By the uniqueness of the gradient curve of distp
starting from r, it must be fixed by the isometry. I.e., the gradient curve of distp starting
from r belongs to F, so F is quasi-convex by Proposition 5.1.

Remark 5.4. Let γ be the isometry fixing F in Proposition 5.4, and let p∈ F. Note that
there is a naturally induced isometry γ̄ on ΣpX, and ΣpF belongs to the fixed point set
F̄ of γ̄. On the other hand, by the uniqueness of radial curve starting from a point with
a fixed direction, γ must fix the radial curve starting from p with any direction ξ ∈ F̄.
Namely, ΣpF= F̄.

Remark 5.5. Let X∈Alex(k), and let Γ be a compact group which acts on X by isometries
with nonempty fixed point set F. In [3], it has been shown that F is extremal as a subset
of the orbit space X/Γ (where a key tool is ‘strictly convex hull’). Based on this, [6] has
proven that F is quasi-convex in X. Note that we can prove it using the same arguments
as in the proof of Proposition 5.4. (We would like to point out that, using the technique
of strictly convex hull, one can also see that ΣpF= F̄ in Remark 5.4.)
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