
J. Math. Study
doi: 10.4208/jms.v58n1.25.03

Vol. 58, No. 1, pp. 38-61
March 2025

L4-Bound of the Transverse Ricci Curvature under
the Sasaki-Ricci Flow

Shu-Cheng Chang1,2,*, Yingbo Han3, Chien Lin1 and
Chin-Tung Wu4

1 Mathematical Science Research Center, Chongqing University of Technology,
Chongqing 400054, China;
2 Department of Mathematics, National Taiwan University, Taipei 106319, China;
3 School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000,
China;
4 Department of Applied Mathematics, National Pingtung University,
Pingtung 90003, China.

Received May 13, 2024; Accepted September 15, 2024;
Published online March 30, 2025.

In honor of Professor Xiaochun Rong on his seventieth birthday

Abstract. In this paper, we show that the uniform L4-bound of the transverse Ricci cur-
vature along the Sasaki-Ricci flow on a compact quasi-regular transverse Fano Sasakian
(2n+1)-manifold M. Then we are able to study the structure of the limit space. As con-
sequences, when M is of dimension five and the space of leaves of the characteristic
foliation is of type I, any solution of the Sasaki-Ricci flow converges in the Cheeger-
Gromov sense to the unique singular orbifold Sasaki-Ricci soliton and is trivial one if
M is transverse K-stable. Note that when the characteristic foliation is of type II, the
same estimates hold along the conic Sasaki-Ricci flow.
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1 Introduction

Let (M,η,ξ,Φ,g) be a compact Sasakian manifold of dimension 2n+1. If the orbits of the
Reeb vector field ξ are all closed and hence circles, then integrates to an isometric U(1)
action on (M,g). Since it is nowhere zero this action is locally free, that is, the isotropy
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group of every point in S is finite. If the U(1) action is in fact free then the Sasakian
structure is said to be regular. Otherwise, it is said to be quasi-regular. If the orbits of ξ
are not all closed, the Sasakian structure is said to be irregular [4]. However, by the second
structure theorem [57], any Sasakian structure (ξ,η,Φ) on (M,g) is either quasi-regular or
there is a sequence of quasi-regular Sasakian structures (M,ξi,ηi,Φi,gi) converging in the
compact-open C∞-topology to (ξ,η,Φ,g). It means that there always exists a quasi-regular
Sasakian structure (ξ,η,Φ) on (M,g).

A Sasakian (2n+1)-manifold is served as the odd-dimensional analogue of Kähler
manifolds. For instance, the Kähler cone of a Sasaki-Einstein 5-manifold is a Calabi-Yau
3-fold. It provides interesting examples of the AdS/CFT correspondence. On the other
hand, the class of simply connected, closed, oriented, smooth 5-manifolds is classifiable
under diffeomorphism due to Smale-Barden [1, 58].

In a compact quasi-regular Sasakian manifold, the Reeb vector field induces a S1-
action which generates the finite isotropy groups. It is the regular free action if the
isotropy subgroup of every point is trivial. In general, as in [19], the space of leaves has
either the codimension at least two fixed point set of every non-trivial isotropy subgroup
or the codimension one fixed point set of some non-trivial isotropy subgroup.

It is our goal to address the related issues on the geometrization and classification
problems of quasi-regular Sasakian manifolds of dimension five with foliation singulari-
ties [16, 19].

Along this spirits, in this paper we will focus on the following Sasaki-Ricci flow

∂
∂t ω(t)=ω(t)−RicT

ω(t), ω(0)=ω0 (1.1)

which is introduced by Smoczyk-Wang-Zhang [61] to study the existence of Sasaki η-
Einstein metrics on Sasakian manifolds. They showed that the flow has the longtime so-
lution and asymptotic converges to a Sasaki η-Einstein metric when the basic first Chern
class is negative (cB

1 (M)<0) or null (cB
1 (M)=0). It is wild open when a compact Sasakian

(2n+1)-manifold is transverse Fano (cB
1 (M)>0). In the paper of [17], Collins and Jacob

proved that the Sasaki-Ricci flow converges exponentially fast to a Sasaki-Einstein metric
if one exists, provided the automorphism group of the transverse holomorphic structure
is trivial. In general, by comparing the Kähler-Ricci flow on log Fano varieties as in [2],
it is hard to deal with because the space of leaves of the characteristic foliation is a polar-
ized, normal projective variety which endowed with the orbifold structure due to (1.3).

In this note, we will assume that M is a compact quasi-regular transverse Fano Sasakian
manifold and the space Z of leaves is well-formed (i.e. M has the foliation singularity of
type I) which means its orbifold singular locus and algebro-geometric singular locus co-
incide, equivalently Z has no branch divisors (see Definition 2.1).

Let (M,η,ξ,Φ,g) be a compact quasi-regular Sasakian (2n+1)-manifold and Z=M/Fξ

denote the space of leaves of the characteristic foliation which is well-formed, a normal
projective variety with codimension at least two orbifold singularities Σ. Then by the
first structure theorem again, M is a principal S1-orbibundle (V-bundle) over Z which
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is also a Q-factorial, polarized, normal projective variety such that there is an orbifold
Riemannian submersion

π : (M,g)→ (Z,ω) (1.2)

and
KT

M =π∗(Korb
Z ). (1.3)

If the orbifold structure of the leave space Z is well-formed, then the orbifold canonical
divisor Korb

Z and canonical divisor KZ are the same and thus

KT
M =π∗(φ∗KZ)

with respect to the orbifold charts on (Z,Ui,φi).
In this paper, we will obtain the crucial estimate on the L4-Bound of the transverse

Ricci curvature under the Sasaki-Ricci flow (1.1) in a compact quasi-regular transverse
Fano Sasakian manifold (M,ξ,η0,Φ0,g0,ω0) of dimension five with foliation singulari-
ties of type I. In our upcoming paper [18], we shall deal with the same issue under the
so-called conic Sasaki-Ricci flow in a compact quasi-regular transverse Fano Sasakian
manifold of dimension five with foliation singularities of type II.

Theorem 1.1. Let (M,ξ,η0,Φ0,g0,ω0) be a compact transverse Fano quasi-regular Sasakian
(2n+1)-manifold and its the space Z of leaves of the characteristic foliation be well-formed. Then,
under the Sasaki-Ricci flow (1.1), there exists a positive constant C such that∫

M |RicT
ω(t)|4ω(t)n∧η0≤C, (1.4)

for all t∈ [0,∞). That is it suffices to show that∫
M |∇T∇T

u(t)|4ω(t)n∧η0≤C,

for all t≥0 and for some constant C independent of t. Here u(t) is the evolving transverse Ricci
potential.

Furthermore, we will show that the transverse Ricci potentials u(t) which is a basic
function behaves very well as t → ∞ under the Sasaki-Ricci flow. This implies that the
limit of Sasaki-Ricci flow should be the Sasaki-Ricci soliton in the L2-topology.

Theorem 1.2. Let (M,ξ,η0,Φ0,g0,ω0) be a compact transverse Fano quasi-regular Sasakian
(2n+1)-manifold and its the space Z of leaves of the characteristic foliation be well-formed. Then,
under the Sasaki-Ricci flow∫

M
|∇T∇Tu|2ω(t)n∧η0→0,∫

M
(∆Bu−|∇Tu|2+u−a)2ω(t)n∧η0→0

as t→∞. Here a(t)= 1
V

∫
M ue−uω(t)n∧η0.
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Now we are able to study the structure of the limit space:

Theorem 1.3. Let (Mi,ηi,ξ,Φi,gi) be a sequence of quasi-regular Sasakian (2n+1)-manifolds
with Sasaki metrics gi = gT

i +ηi⊗ηi such that for basic potentials φi

ηi =η+dc
B φi

and

dηi =dη+
√
−1∂B∂B φi.

We denote that (Zi,hi, Ji,ωhi) are a sequence of well-formed normal projective orbifolds surfaces
which are the corresponding foliation leave space with respect to (Mi,ηi,ξ,Φi,gi) such that

ωgT
i
= 1

2 dηi =π∗(ωhi); Φi =π∗(Ji)

Suppose that (Mi,ηi,ξ,Φi,gi) is a compact smooth transverse Fano Sasakian (2n+1)-manifolds
satisfying ∫

M
|RicT

gT
i
|pωn

i ∧η≤Λ,

and

Vol(Bξ,gT
i
(xi,1))≥ν

for some p>n, Λ>0, υ>0. Then, after passing to a subsequence if necessary, (Mi,Φi,gi,xi) con-
verges in the Cheeger-Gromov sense to limit length spaces (M∞,Φ∞,d∞,x∞) and then (Zi, Ji,hi,
π(xi)) converges to (Z∞, J∞,h∞,π(x∞)) such that for any r>0 and pi∈Mi with pi→ p∞∈M∞,

Vol(Bhi(π(pi),r))→H2n(Bh∞(π(p∞),r)),

Vol(Bξ,gT
i
(pi,r))→H2n(Bξ,gT

∞
(p∞,r)).

Moreover,

Vol(B(pi,r))→H2n+1(B(p∞,r))

where Hm denotes the m-dimensional Hausdorff measure and

1. M∞ is a S1-orbibundle over the normal projective variety Z∞ =M∞/Fξ .

2. Moreover, Z∞ =R∪S such that S is a closed singular set of codimension at least two and
R consists of points whose tangent cones are R2n.

3. Furthermore, the convergence on the regular part of M∞ which is a S1-principle bundle over
R in the (Cα∩L2,p

B )-topology for any 0<α<2− n
p .
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In this note, the central issue is to show the L4-bound of the transverse Ricci curvature
(Theorem 1.1) along the Sasaki-Ricci flow. Then the transverse Ricci potentials u(t) which
is a basic function behaves very well as t→∞ under the Sasaki-Ricci flow. This implies
that the structure of the limit of Sasaki-Ricci flow should be the Sasaki-Ricci soliton in the
L2-topology.

With its applications, we will state it without the detailed proof as in the final section.
We refer to [12] for some details.

2 Structure theorem and foliation singularities

In this section, we will recall some preliminaries for Sasakian manifolds with foliation
singularities, a type II deformation of the Sasakian structure and the Sasaki-Ricci flow.
We refer to [4, 19, 35, 59], and references therein for some details.

A Riemannian (2n+1)-manifold (M,g,∇) is called a Sasaki manifold if the metric
cone (C(M),g, J) :=(R+×M, dr2+r2g, J) is Kähler with the Kähler form ω = 1

2

√
−1∂∂r2

and

η=
1
2

g(ξ,·) and ξ= J(r
∂

∂r
).

The function 1
2 r2 is hence a global Kähler potential for the cone metric. As [r=1]={1}×

M ⊂ C(M), we may define the Reeb vector field ξ on M by ξ = J( ∂
∂r ) and the contact

1-form η on TM by η = g(ξ,·). Then ξ is the unit Killing vector field such that η(ξ) =
1 and dη(ξ,·)=0. The tensor field of type (1,1), defined by

Φ(Y)=∇Yξ

satisfies the condition (∇XΦ)(Y)=g(ξ,Y)X−g(X,Y)ξ for any pair of vector fields X and
Y on M. Then such a triple (η,ξ,Φ) is called a Sasakian structure on a Sasakian manifold
(M,g). The first structure theorem on Sasakian manifolds states that

Proposition 2.1 ([4,42,45,57]). Let (M,η,ξ,Φ,g) be a compact quasi-regular Sasakian manifold
of dimension 2n+1 and Z denote the space of leaves of the characteristic foliation Fξ (just as
topological space). Then

1. Z carries the structure of a Hodge orbifold Z=(Z,∆) with an orbifold Kähler metric h
and the Kähler form ωh which defines an integral class in H2

orb(Z,Z) in such a way that
π :(M,g)→(Z,h,ωh) is an orbifold Riemannian submersion, and a principal S1-orbibundle
(V-bundle) over Z. Furthermore, it satisfies 1

2 dη=π∗(ωh). The fibers of π are geodesics.

2. Z is also a Q-factorial, polarized, normal projective algebraic variety.

3. The orbifold Z is Fano if and only if Ricg >−2. In this case Z as a topological space is
simply connected; and as an algebraic variety is uniruled with Kodaira dimension −∞.
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4. (M,ξ,g) is Sasaki-Einstein if and only if (Z,h) is Kähler-Einstein with scalar curvature
4n(n+1).

5. If (M,η,ξ,Φ,g) is regular, then the orbifold structure is trivial and π is a principal circle
bundle over a smooth projective algebraic variety.

For all previous discussions with the special case for n= 2, we have the following con-
cerning its foliation singularities:

Definition 2.1 ([19]). 1. Foliation singularities of type I: Let (M,η,ξ,Φ,g) be a compact quasi-
regular Sasakian 5-manifold and its leave space (Z,∅) of the characteristic foliation be well-
formed. Then Z is a Q-factorial normal projective algebraic orbifold surface with isolated sin-
gularities of a finite cyclic quotient of C2. Accordingly, p ∈ Z is analytically isomorphic to
p ∈ Z ≃ (0 ∈ C2)/µZr ,where Zr is a cyclic group of order r and its action on such open affine
neighborhood is defined by

µZr : (z1,z2)→ (ζaz1,ζbz2),

where ζ is a primitive r-th root of unity. We denote the cyclic quotient singularity by 1
r (a,b) with

(a,r)=1=(b,r). In particular, the action can be rescaled so that every cyclic quotient singularity
corresponds to a 1

r (1,a)-point with (r,a)=1. It is klt (Kawamata log terminal) singularities.

2. Foliation singularities of type II: Let (M,η,ξ,Φ,g) be a compact quasi-regular Sasakian 5-
manifold and its leave space (Z,∆) has the codimension one fixed point set of some non-trivial
isotropy subgroup. In this case, the action

µZr : (z1,z2)→ (e
2πa1 i

r1 z1,e
2πa2 i

r2 z2),

for some positive integers r1, r2 whose least common multiple is r, and ai, i = 1,2 are integers
coprime to ri, i = 1,2. Then the foliation singular set contains some 3-dimensional Sasakian
submanifolds of M. More precisely, the corresponding singularities in (M,η,ξ,Φ,g) is called the
Hopf S1-orbibundle over a Riemann surface Σh.

3 The Sasaki-Ricci flow

Let (M,η,ξ,Φ,g) be a compact Sasakian (2n+1)-manifold with g(ξ,ξ) = 1 and the inte-
gral curves of ξ be geodesics. For any point p ∈ M, we can construct local coordinates
in a neighborhood of p which are simultaneously foliated and Riemann normal coordi-
nates [37]. That is, we can find Riemann normal coordinates {x,z1,··· ,zn} on a neighbor-
hood U of p, such that ∂

∂x=ξ on U. Let {Uα}α∈A be an open covering of the Sasakian man-
ifold and πα :Uα→Vα⊂Cn be submersions such that πα◦π−1

β :πβ(Uα∩Uβ)→πα(Uα∩Uβ)

is biholomorphic. On each Vα, there is a canonical isomorphism dπα : Dp → Tπα(p)Vα for
any p ∈ Uα, where D = kerξ ⊂ TM. Since ξ generates isometries, the restriction of the
Sasakian metric g to D gives a well-defined Hermitian metric gT

α on Vα. This Hermitian
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metric in fact is Kähler. More precisely, let z1,··· ,zn be the local holomorphic coordi-
nates on Vα. We pull back these to Uα and still write the same for the horizontal dis-
tribution D locally. Let x be the coordinate along the leaves with ξ = ∂

∂x . Then we have
the foliation local coordinate {x,z1,··· ,zn} on Uα and (D⊗C) is spanned by the fields
Zj=

(
∂

∂zj +
√
−1hj

∂
∂x

)
, j∈{1,··· ,n} with η=dx−

√
−1hjdzj+

√
−1hjdzj and its dual frame

{η,dzj, j = 1,··· ,n}. Here h is a basic function such that ∂h
∂x = 0 and hj =

∂h
∂zj , hjl =

∂2h
∂zj∂zl

with the foliation normal coordinate hj(p)=0, hjl(p)=δl
j , dhjl(p)=0. Moreover, we have

dη(Zα,Zβ) = dη( ∂
∂zα , ∂

∂zβ ).Then the Kähler 2-form ωT
α of the Hermitian metric gT

α on Vα,

which is the same as the restriction of the Levi form dη to D̃n
α , the slice {x = constant}

in Uα, is closed. The collection of Kähler metrics {gT
α } on {Vα} is so-called a transverse

Kähler metric. We often refer to dη as the Kähler form of the transverse Kähler metric gT

in the leaf space D̃n.
The Kähler form dη on D and the Kähler metric gT are defined such that g=gT+η⊗η.

Now in terms of the normal coordinate, we have

gT = gT
ijdzidzj.

Here gT
ij
= gT( ∂

∂zi , ∂
∂zj ). The transverse Ricci curvature RicT of the Levi-Civita connection

∇T associated to gT is defined by RicT =Ric+2gT and then RT =R+2n. The transverse
Ricci form is defined to be ρT =RicT(Φ·,·)=−

√
−1RT

ij
dzi∧dzj with

RT
ij =− ∂2

∂zi∂zj logdet(gT
αβ
)

and it is a closed basic (1,1)-form ρT =ρ+2dη.
We recall that a p-form γ on a Sasakian (2n+1)-manifold is called basic if i(ξ)γ= 0

and Lξγ = 0. Let Λp
B be the sheaf of germs of basic p-forms and Ωp

B be the set of all
global sections of Λp

B. It is easy to check that dγ is basic if γ is basic. Set dB = d|Ωp
B
. Then

dB :=∂B+∂B : Ωp
B →Ωp+1

B with ∂B : Λp,q
B →Λp+1,q

B and ∂B : Λp,q
B →Λp,q+1

B . Moreover

dBdc
B =

√
−1∂B∂B and d2

B =(dc
B)

2=0

for dc
B := 1

2

√
−1(∂B−∂B). The basic Laplacian is defined by ∆B := dBd∗B+d∗BdB. Then we

have the basic de Rham complex (Ω∗
B,dB) and the basic Dolbeault complex (Ωp,∗

B ,∂B) and
its cohomology ring H∗

B(Fξ)≜ H∗
B(M,R) of the foliation Fξ [33]. Then we can define

the orbifold cohomology of the leaf space Z= M/U(1) to be this basic cohomology ring
H∗

orb(Z,R)≜H∗
B(Fξ) and the basic first Chern class cB

1 (M) by cB
1 =[ ρT

2π ]B. And a transverse
Kähler-Einstein metric (or a Sasaki η-Einstein metric) means that it satisfies [ρT]B=κ[dη]B
for κ=−1,0,1, up to a D-homothetic deformation.
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Now we consider the type II deformations of Sasakian structures (M,η,ξ,Φ,g) as fol-
lowings: By fixing the ξ and varying η, define η̃=η+dc

B φ, for φ∈Ω0
B. Then

dη̃=dη+
√
−1∂B∂B φ and ω̃=ω+

√
−1∂B∂B φ.

Hence we have the same transversal holomorphic foliation but with the new Kähler
structure on the Kähler cone C(M) and new contact bundle D̃ with ω̃ = 1

2 ddcr̃2, r̃= reφ.
Since r ∂

∂r = r̃ ∂
∂r̃ and ξ+

√
−1r ∂

∂r = ξ−
√
−1J(ξ) is a holomorphic vector field on C(M), so

we have the same holomorphic structure. Finally, by the ∂B∂B-lemma in the basic Hodge
decomposition, there is a basic function F : M→R such that

ρT(x,t)−κdη(x,t)=dBdc
BF=

√
−1∂B∂BF.

Now we focus on finding a new η-Einstein Sasakian structure (M,ξ,η̃,Φ̃, g̃) with g̃T=
(gT

ij
+φij)dzidzj such that

ρ̃T =κdη̃.

Hence ρ̃T−ρT = κdBdc
B φ−dBdc

BF. It follows that there is a Sasakian analogue of the
Monge-Ampère equation for the orbifold version of Calabi-Yau Theorem

det(gT
αβ
+φαβ)

det(gT
αβ
)

= e−κφ+F. (3.1)

And we consider the Sasaki-Ricci flow on M×[0,T)

d
dt

gT(x,t)=−(RicT(x,t)−κgT(x,t))

which is equivalent to

d
dt

φ= logdet(gT
αβ
+φαβ)−logdet(gT

αβ
)+κφ−F. (3.2)

4 L4-Bound of the transverse Ricci curvature under the Sasaki-
Ricci flow

In this section, we show the L4-bound of the transverse Ricci curvature under the Sasaki-
Ricci flow.

We follow the line in [68] and [16] to prove this estimate. Note that the flow (1.1) can
be expressed locally as a parabolic Monge-Ampère equation on a basic Kähler potential
φ as in (3.2):

d
dt

φ= logdet(gT
αβ
+φαβ)−logdet(gT

αβ
)+φ−u(0). (4.1)
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Here u(0) is the transverse Ricci potential of η0, defined by

RT
kl−gT

kl =∂k∂lu(0)

which we normalize so that 1
V

∫
M e−u(0)ωn

0 ∧η0 = 1. Let u(t) be the evolving transverse
Ricci potential. Then

∂k∂l
·
φ=

∂

∂t
gT

kl = gT
kl−RT

kl =∂k∂lu. (4.2)

It follows from this equation that φ evolves by
·
φ(t)=u(t)+c(t), for c(t) depending only

on time t. Then by using c(t) to adjust the initial value φ(0), we always assume that

φ(0)= c0 :=
1
V

∫ ∞

0
e−t||∇T ·

φ(t)||2L2 dt+
1
V

∫
M

u(0)ωn
0 ∧η0.

Since

∂k∂l(
∂u
∂t

)=∂k∂lu+∂k∂l∆Bu,

then we can

a(t)=
1
V

∫
M

ue−uω(t)n∧η0

such that

∂u
∂t

=∆Bu+u−a.

Now by Jensen’s inequality, we have a(t)≤ 0 and then there exist a uniform positive
constant C1 such that [21]

−C1≤ a(t)≤0 (4.3)

for all t≥0. Moreover, it follows from the Poincaré type inequality, one can show that a(t)
increases along the Sasaki-Ricci flow, so we may assume

lim
t→∞

a(t)= a∞.

It follows from [21] that

Lemma 4.1. Let (M2n+1,ξ,g0) be a compact Sasakian manifold and let gT(t) be the solution of
the Sasaki-Ricci flow (1.1) with the initial transverse metric gT

0 . Then there exists C depending
only on the initial metric such that

||u(t)||C0+||∇Tu(t)||C0+||∆Bu(t)||C0 ≤C

for all t≥0.
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In order to prove the L4 bound of transverse Ricci curvature (1.4) under the normal-
ized Sasaki-Ricci flow, it suffices to show that∫

M
|∇T∇T

u(t)|4ω(t)n∧η0≤C, (4.4)

for all t≥0 and for some constant C independent of t. We need the following Lemmas.

Lemma 4.2. There exists a positive constant C=C(gT
0 ) such that∫

M
[|∇T∇T

u|2+|∇T∇Tu|2+|RmT|2]ω(t)n∧η0≤C, (4.5)

for all t∈ [0,∞).

Proof. Applying the integration by parts, we have∫
M
[|∇T∇T

u|2ω(t)n∧η0=
∫

M
(∆Bu)2ω(t)n∧η0,

and also ∫
M
|∇T∇Tu|2ω(t)n∧η0

=
∫

M
[(∆Bu)2−

〈
RicT,∂Bu∂Bu

〉
]ω(t)n∧η0

=
∫

M
[(∆Bu)2−|∇Tu|2+

〈
∂B∂Bu,∂Bu∂Bu

〉
]ω(t)n∧η0

≤
∫

M
[(∆Bu)2+|∇T∇T

u|2+|∇Tu|4]ω(t)n∧η0.

Moreover, the L2-bound of the transverse Riemannian curvature tensor follows from uni-
formly bound of the transverse scalar curvature and the Sasaki analogue of the Chern-
Weil theory:

(2π)2

2n−2(n−2)!

∫
M
[2cB

2 −
n

n+1
(cB

1 )
2]∧ω(t)n−2∧η0

=
1

2nn!

∫
M
[|RmT|− 2

n(n+1)
(RT)2− (n−1)(n+2)

n(n+1)
((RT)2+(2n(n+1))2]ω(t)n∧η0.

The following integral inequalities hold by using Lemma 4.1 and integration by parts.

Lemma 4.3. There exists a universal positive constant C=C(gT
0 ) such that∫

M
|∇T∇T

u|4ωn∧η0≤C
∫

M
[|∇T∇T∇Tu|2+|∇T∇T∇T

u|2]ω(t)n∧η0, (4.6)∫
M
|∇T∇Tu|4ωn∧η0≤C

∫
M
[|∇T∇T∇Tu|2+|∇T∇T∇T

u|2
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+|∇T∇T∇Tu|2]ω(t)n∧η0, (4.7)

and ∫
M
[|∇T∇T∇Tu|2+|∇T∇T∇T

u|2+|∇T∇T∇Tu|2]ω(t)n∧η0

≤C
∫

M
[|∇T∆Tu|2+|∇T∇Tu|2+|RmT|2]ω(t)n∧η0 (4.8)

for all t∈ [0,∞).

Now we can prove a uniform bound of
∫

M |∇T∇T
u(t)|4ω(t)n∧η0 under the Sasaki-Ricci

flow.

Proposition 4.1. There exists a positive constant C=C(gT
0 ) such that∫

M
[|∇T∇T∇Tu|2+|∇T∇T∇T

u|2+|∇T∇T∇Tu|2]ω(t)n∧η0

+
∫

M
[|∇T∇T

u|4+|∇T∇Tu|4]ω(t)n∧η0≤C, (4.9)

for all t∈ [0,∞).

Proof. From Lemma 4.3, it is sufficient to get a uniform bound of
∫

M |∇T∆Tu|2ω(t)n∧η0
under the Sasaki-Ricci flow. Since(

∂

∂t
−∆B

)
∆Bu=∆Bu−|∇T∇T

u|2,

thus

1
2

(
∂

∂t
−∆B

)
(∆Bu)2=(∆Bu)2−|∇T∆Bu|2−∆Bu|∇T∇T

u|2.

Integrating over the manifold gives∫
M
|∇T∆Bu|2ωn∧η0

=
∫

M
[(∆Bu)2−∆Bu|∇T∇T

u|2− 1
2

∂

∂t
(∆Bu)2]ωn∧η0

=
∫

M
[(∆Bu)2−∆Bu|∇T∇T

u|2+ 1
2
(∆Bu)3]ωn∧η0−

1
2

d
dt

∫
M
(∆Bu)2ωn∧η0.

Applying the uniform bound of ∆Bu from Lemma 4.1 and (4.5), we obtain∫ t+1

t

∫
M
|∇T∆Bu|2ω(s)n∧η0ds≤C, (4.10)
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for all t≥0. Next we compute

d
dt

∫
M
|∇T∆Bu|2ωn∧η0

=
∫

M
[|∇T∆Bu|2−|∇T∇T

∆Bu|2−|∇T∇T∆Bu|2+∆Bu|∇T∆Tu|2]ωn∧η0

−
∫

M
[⟨∇T|∇T∇T

u|2,∇T∆Bu⟩+⟨∇T|∇T∇T
u|2,∇T

∆Bu⟩]ωn∧η0.

By integration by parts, we obtain∫
M
⟨∇T|∇T∇T

u|2,∇T∆Bu⟩ωn∧η0

≤1
4

∫
M
[|∇T∇T

∆Bu|2+|∇T∇T∆Bu|2]ωn∧η0

+C
∫

M
[|∇T∆Bu|2+|∇T∇T∇T

u|2]ωn∧η0

and also ∫
M
⟨∇T|∇T∇T

u|2,∇T
∆Bu⟩ωn∧η0

≤1
4

∫
M
[|∇T∇T

∆Bu|2+|∇T∇T∆Bu|2]ωn∧η0

+C
∫

M
[|∇T∆Bu|2+|∇T∇T∇T

u|2]ωn∧η0.

Therefore, by (4.8) and Lemma 4.1,

d
dt

∫
M
|∇T∆Bu|2ωn∧η0

≤− 1
2

∫
M
[|∇T∇T

∆Bu|2+|∇T∇T∆Bu|2]ωn∧η0+C(1+
∫

M
|∇T∆Bu|2ωn∧η0)

≤C(1+
∫

M
|∇T∆Bu|2ωn∧η0).

The required uniform bound of
∫

M |∇T∆Bu|2ωn∧η0 follows from this and (4.10).

5 Structure of the limit space

In this section, we will show that the transverse Ricci potentials u(t) which is a basic
function behaves very well as t → ∞ under the Sasaki-Ricci flow. This implies that the
structure of the limit of Sasaki-Ricci flow should be the Sasaki-Ricci soliton in the L2-
topology. We first define

µ(gT)= inf{WT(gT, f ) :
∫

M e− f ωn∧η0=V},



50 Chang S, Han Y, Lin C and Wu C / J. Math. Study, 58 (2025), pp. 38-61

where
WT(gT, f )=(2π)−n

∫
M
(RT+|∇T f |2+ f )e− f ωn∧η0.

Note that,

µ(gT)≤ 1
V

∫
M

ue−uωn∧η0.

Now under the Sasaki-Ricci flow, for any backward heat equation [21]

∂ f
∂t

=−∆B f +|∇T f |2+∆Bu, (5.1)

we have

d
dt
WT(gT, f )=

1
V

∫
M
(|∇T∇T

(u− f )|2+|∇T∇T f |2)e− f ωn∧η0≥0

and then
µ(gT

0 )≤µ(gT(t))≤0

for all t≥0.

Lemma 5.1. Under the Sasaki-Ricci flow, for a smooth basic function f∫
M
|∇T∇T f |2ωn∧η0≤C(gT

0 )
∫

M
|∇T∇T

f |2ωn∧η0.

Proof. We may assume that
∫

M f e−uωn∧η0=0. It follows from [21, Theorem 8.1], we have
the transverse weighted Poincaré inequality

1
V

∫
M

f 2e−uωn∧η0≤
1
V

∫
M
|∇T f |2e−uωn∧η0+(

1
V

∫
M

f e−uωn∧η0)
2

for all basic function f ∈C∞
B (M;R). Thus∫
M

f 2e−uωn∧η0≤
∫

M
|∇T f |2e−uωn∧η0.

It follows from Lemma 4.1 that∫
M

f 2ωn∧η0≤C(g0)
∫

M
|∇T f |2ωn∧η0.

Thus ∫
M
|∇T f |2ωn∧η0=−

∫
M

f ∆B f ωn∧η0

≤ 1
2C

∫
M

f 2ωn∧η0+2C
∫

M
(∆B f )2ωn∧η0
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≤ 1
2

∫
M
|∇T f |2ωn∧η0+2C

∫
M
(∆B f )2ωn∧η0

and ∫
M
|∇T f |2ωn∧η0≤C(g0)

∫
M
(∆B f )2ωn∧η0.

On the other hand,∫
M
|∇T∇T f |2ωn∧η0=

∫
M
((∆B f )2−RicT(∇T f ,∇T f ))ωn∧η0

=
∫

M
((∆B f )2−|∇T f |2)ωn∧η0+

∫
M
∇T

i ∇
T
j u∇T

i f∇T
j f ωn∧η0

=
∫

M
((∆B f )2−|∇T f |2)ωn∧η0

−
∫

M
∇T

j u(∆B f∇T
j f +∇T

i f∇T
i ∇T

j f )ωn∧η0

≤
∫

M
((∆B f )2−|∇T f |2)ωn∧η0

+
∫

M
((∆B f )2+

1
2
|∇T∇T f |2+|∇T

u|2|∇T f |2)ωn∧η0

≤
∫

M
(2(∆B f )2+

1
2
|∇T∇T f |2+C|∇T f |2)ωn∧η0

and then ∫
M
|∇T∇T f |2ωn∧η0≤

∫
M
(4(∆B f )2+2C|∇T f |2)ωn∧η0

≤C
∫

M
(∆B f )2ωn∧η0

≤C(g0)
∫

M
|∇T∇T

f |2ωn∧η0.

Theorem 5.1. Under the Sasaki-Ricci flow∫ ∞

0

∫
M
|∇T∇Tu|2ω(t)n∧η0∧dt<∞. (5.2)

In particular, ∫
M
|∇T∇Tu|2ω(t)n∧η0→0 (5.3)

as t→∞.

Proof. Let fk be a minimizer of µ(gT(k)) with
∫

M e− fk ωn∧η0=V and fk(t) be the solution
of the backward heat equation (5.1) on the time interval [k−1,k]. Then

1
V

∫ k

k−1

∫
M
(|∇T∇T fk|2+|∇T∇T

(u− fk)|2)e− fk ωn∧η0∧dt≤µ(gT(k))−µ(gT(k−1)).
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Hence by using µ(gT(t))≤0

∞

∑
k=1

∫ k

k−1

∫
M
(|∇T∇T fk|2+|∇T∇T

(u− fk)|2)ωn∧η0∧dt≤C(gT
0 ).

On the other hand, by applying the above estimate and Lemma 5.1 to (u− fk), we have∫ ∞

0

∫
M
|∇T∇Tu|2ω(t)n∧η0∧dt

≤
∞

∑
k=1

∫
M
(2|∇T∇T fk|2+2|∇T∇T(u− fk)|2)ωn∧η0∧dt

≤
∞

∑
k=1

∫
M
(2|∇T∇T fk|2+2C|∇T∇T

(u− fk)|2)ωn∧η0∧dt

≤C(gT
0 ).

This is the estimate (5.2). Next, it follows from the straight computation that

∂

∂t
|∇T∇Tu|2

=∆B|∇T∇Tu|2−|∇T∇T∇Tu|2−|∇T∇T∇Tu|2−2RmT(∇T∇Tu,∇T∇T
u)

and

d
dt

∫
M
|∇T∇Tu|2ω(t)n∧η0

≤
∫

M
[(||∇u(t)||2C0+||∆Bu(t)||C0)|∇T∇Tu|2+|∇T∇T∇T

u|2

+||∇u(t)||2C0 |RmT|2]ω(t)n∧η0.

Then, from Lemmas 4.1-4.2 and Proposition 4.1, we have

d
dt

∫
M
|∇T∇Tu|2ω(t)n∧η0≤C(gT

0 ).

Hence ∫
M
|∇T∇Tu|2ω(t)n∧η0→0

as t→∞.

Similarly, we have
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Theorem 5.2. Under the Sasaki-Ricci flow,∫ t+1

t

∫
M
|∇T(∆Bu−|∇Tu|2+u)|2ω(t)n∧η0∧ds→0 (5.4)

as t→∞ and then ∫
M
(∆Bu−|∇Tu|2+u−a)2ω(t)n∧η0→0 (5.5)

as t→∞.

Proof. Note that by the transverse Ricci potential relation

∇T
i (∆Bu−|∇Tu|2+u)=∇T

j ∇T
i ∇T

j u−∇T
i ∇T

j u∇T
j u

and then

|∇T(∆Bu−|∇Tu|2+u)|2≤2(|∇T
i ∇T

j u|2|∇T
j u|2+|∇T

j ∇T
i ∇T

j u|2).

In order to derive (5.4), it suffices to prove that∫ t+1

t

∫
M
|∇T

j ∇T
i ∇T

j u|2ω(t)n∧η0∧ds→0. (5.6)

Since the Reeb vector field and the transverse holomorphic structure are both invari-
ant, all the integrands are only involved with the transverse Kähler structure ω(t) and
basic functions u(t). Hence, under the Sasaki-Ricci flow, when one applies integration by
parts, the expressions involved behave essentially the same as in the Kähler-Ricci flow.
Hence (5.6) follows easily from subsection 4.1 and [68, Proposition 3.2].

Next we denote ∆Bu−|∇Tu|2+u−a=H with
∫

M He−uω(t)n∧η0=0. Then, by weighted
Poincaré inequality ([22, Theorem 1.1]) along the Sasaki-Ricci flow(∫

M
f

2(2n+1)
2n−1 ω(t)n∧η0

) 2n−1
2n+1

≤CS(gT
0 ,n)

∫
M
(||∇T f ||2+ f 2)ω(t)n∧η0 (5.7)

for every f ∈W1,2
B (M) and the uniform bound of u, we have∫

M
H2ω(t)n∧η0≤C

∫
M
|∇T H|2ω(t)n∧η0

and then ∫ t+1

t

∫
M

H2ω(t)n∧η0∧dt→0

as t→∞. Since
∂H
∂t

=∆BH+H− da
dt

+|∇T∇Tu|2,
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it follows from Proposition 4.1 that

d
dt

∫
M

H2ω(t)n∧η0=
∫

M
2H(∆BH+H− da

dt
+|∇T∇Tu|2+ 1

2
H∆Bu)ω(t)n∧η0

≤
∫

M
2H(H+|∇T∇Tu|2+ 1

2
H∆Bu)ω(t)n∧η0

≤(C+|∆Bu|2)
∫

M
H2ω(t)n∧η0+

∫
M
|∇T∇Tu|4ω(t)n∧η0

≤C(1+
∫

M
H2ω(t)n∧η0).

Thus
d
dt

∫
M

H2ω(t)n∧η0≤C(1+
∫

M
H2ω(t)n∧η0)

and ∫
M
(∆Bu−|∇Tu|2+u−a)2ω(t)n∧η0→0

as t→∞.

Now by the first structure theorem on Sasakian manifolds, M is a principal S1-orbibundle
(V-bundle) over Z which is also a Q-factorial, polarized, normal projective orbifold such
that there is an orbifold Riemannian submersion π:(M,g,ω)→(Z,h,ωh) with g=gT+η⊗η,
gT = π∗(h); 1

2 dη = π∗(ωh). The orbit ξx is compact for any x ∈ M, we then define the
transverse distance function as

dT(x,y)≜dg(ξx,ξy),

where d is the distance function defined by the Sasaki metric g. Then

dT(x,y)=dh(π(x),π(y)).

We define a transverse ball Bξ,g(x,r) as follows:

Bξ,g(x,r)=
{

y : dT(x,y)< r
}
={y : dh(π(x),π(y))< r}.

Based on Perelman’s non-collapsing theorem for a transverse ball along the unnormaliz-
ing Sasaki-Ricci flow, it follows that

Lemma 5.2 ([21, Proposition 7.2], [41, Lemma 6.2]). Let (M2n+1,ξ,g0) be a compact Sasakian
manifold and let gT(t) be the solution of the unnormalizing Sasaki-Ricci flow with the initial
transverse metric gT

0 . Then there exists a positive constant C such that for every x∈M, if |ST|≤
r−2 on Bξ,g(t)(x,r) for r∈ (0,r0], where r0 is a fixed sufficiently small positive number, then

Vol(Bξ,g(t)(x,r))≥Cr2n.

Moreover, the transverse scalar curvature RT and transverse diameters dT
gT(t) are uniformly bounded

under the Sasaki-Ricci flow. As a consequence, there is a uniform constant C such that

diam(M,g(t))≤C.
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Then, Theorem 1.3 follows easily from the Cheeger-Colding-Tian structure theory for
Kähler orbifolds [11, 68] for a transverse ball along the Sasaki-Ricci flow.

6 Applications

By the convergence theorem in Theorem 1.3, we have the regularity of the limit space:
We define a family of Sasaki-Ricci flow gT

i (t) by

(M,gT
i (t))=(M,gT(ti+t))

for t≥−1 and ti →∞ and for gT
i (t)=π∗(hi(t))

(Z,hi(t))=(M,hi(ti+t)).

Now for the associated transverse Ricci potential ui(t) as in Lemma 4.1, we have

||ui(t)||C0+||∇Tui(t)||C0+||∆Bui(t)||C0 ≤C.

Moreover, it follows (5.3) that ∫
M
|▽T▽Tu|2ω(t)n∧η0→0

as i → ∞. Furthermore, by Theorem 1.1 and a convergence Theorem 1.3, passing to a
subsequence if necessary, we have at t=0,

(M,gT
i (0))→ (M∞,gT

∞,dT
∞)

such that
(Z,hi(0))→ (Z∞,h∞,dh∞)

in the Cheeger-Gromov sense. Moreover,

(gT
i (0),ui(0))

Cα∩L2,p
B→ (gT

∞,u∞) (6.1)

on (M∞)reg which is a S1-principle bundle over R. For the solution (M,ω(t),gT(t)) of
the Sasaki-Ricci flow and the line bundle (KT

M)−1,h(t)=ωn(t)) with the basic Hermitian
metric h(t), we work on the evolution of the basic transverse holomorphic line bundle
((KT

M)−m,hm(t)) for a large integer m such that (KT
M)−m is very ample. We consider the

basic embedding which is S1-equivariant with respect to the weighted C∗action in CNm+1

Ψ : M→ (CPNm ,ωFS)

defined by the orthonormal basic transverse holomorphic section {σ0,σ1,...σN} in H0
B(M,

(KT
M)−m) with Nm =dimH0

B(M,(KT
M)−m)−1 with

∫
M(σi,σj)hm(t)ω

n(t)∧η0=δij.
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Define

Fm(x,t) :=
Nm

∑
α=0

||σα||2hm(x). (6.2)

Note that, under these notations, the curvature form of the Chern connection is Ric(h(t))=
mω(t). Then the following result is a Sasaki analogue of the partial C0-estimate which
was obtained in the Kähler-Ricci flow [68, Theorem 5.1] and the proof there does carry
over to our Sasaki setting due to the first structure theorem again on quasi-regular Sasakian
manifolds.

Lemma 6.1. Suppose (6.1) holds, we have

inf
ti

inf
x∈M

Fm(x,ti)>0 (6.3)

for a sequence of m→∞.

Finally, as a consequence of the first structure theorem for Sasakian manifolds and the
partial C0-estimate [12], the Gromov-Hausdorff limit Z∞ is a variety embedded in some
CPN and the singular set S is a normal subvariety [63, Theorem 1.6]. This will imply the
following:

Corollary 6.1 ([12]). Let (M,ξ,η0,g0) be a compact quasi-regular transverse Fano Sasakian man-
ifold of dimension five and (Z0 = M/Fξ ,h0,ωh0) denote the space of leaves of the characteristic
foliation which is a normal Fano projective Kähler orbifold surface with codimension two orbifold
singularities Σ0. Then, under the Sasaki-Ricci flow (1.1), (M(t),ξ,η(t),g(t)) converges to a
compact quasi-regular transverse Fano Sasakian orbifold manifold (M∞,ξ,η∞,g∞) with the leave
space of orbifold Kähler manifold (Z∞ = M∞/Fξ ,h∞) which can have at worst codimension two
orbifold singularities Σ∞. Furthermore, gT(ti) converges to a gradient Sasaki-Ricci soliton orb-
ifold metric g⊺∞ on M∞ with g⊺∞=π∗(h∞) such that h∞ is the smooth Kähler-Ricci soliton metric
in the Cheeger-Gromov topology on Z∞\Σ∞. Furthermore, M∞ is a S1-orbibundle over Z∞ which
is a normal projective variety and the singular set S of Z∞ is a codimension two orbifold singu-
larities.

As the final consequence, we will show that the gradient Sasaki-Ricci soliton orbifold
metric is a Sasaki-Einstein metric if M is transverse K-stable. This is an old dimensional
counterpart of Yau-Tian-Donaldson conjecture on a compact K-stable Kähler manifold
[13–15, 66]. It can be viewed as a Sasaki analogue of Tian-Zhang’s [68] and Chen-Sun-
Wang’s result [24] for the Kähler-Ricci flow.

For the Hamiltonian holomorphic vector field V, dπα(V) is a holomorphic vector field
on Vα and the complex valued Hamiltonian function uV :=

√
−1η(V) satisfies ∂BuV =

−
√
−1
2 iVdη. Assume we normalize that cB

1 (M) = [ 1
2 dη]B, there exists a basic function hω

such that RicT(x,t)−ω(x,t)=
√
−1∂B∂Bhω. The Sasaki-Futaki invariant [5, 35]

fM(V)=
∫

M
V(hω)ω

n∧η (6.4)
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is only depends on the basic cohomology represented by dη, and not on the particular
transverse Kähler metric. It is clear that fM vanishes if M has a Sasaki-Einstein metric in
its basic cohomology class. One also have the following reformulation:

fM(V)=−n
∫

M
uV(RicT

ω−ω)ωn−1∧η=−
∫

M
uV(RT

ω−n)ωn∧η. (6.5)

Let (M,ξ,η,g,ω) be a compact transverse Fano quasi-regular Sasakian manifold and
its leave space Z be the normal Fano projective Kähler orbifold and well-formed. Fol-
lowing the notions as in [35] and [32], the Sasaki-Futaki invariant can be extended to
the generalized Sasaki-Futaki invariant which has the following reformulation involving
(Z,h,ωh):

fM(V)= fZ(X) (6.6)

with
fZ(X)=−n

∫
Z

θX(Ricωh −ωh)ωh
n−1=−

∫
Z

θX(Rωh −n)ωh
n.

By applying first structure theory for a quasi-regular Sasakian manifold, there exists a
Riemannian submersion, S1-orbibundle π : M→Z, such that KT

M =π∗(Korb
Z )=π∗(φ∗KZ).

Then by the CR Kodaira embedding theorem [56], there exists an embedding Ψ : M →
(CPN ,ωFS) defined by the basic transverse holomorphic section {s0,s1,··· ,sN} of H0

B(M,
(KT

M)−m) which is S1-equivariant with respect to the weighted C∗-action in CN+1 with
N=dimH0

B(M,(KT
M)−m)−1 for a large positive integer m. In fact, in our situation Z is also

normal Fano, there is an embedding ψ|mK−1
Z | : Z→P(H0(Z,KZ

−m)). Define Ψ|m(KT
M)−1|=

ψ|mK−1
Z |◦π such that

Ψ|m(KT
M)−1| : M→P(H0

B(M,(KT
M)−m).

We define Di f f T(M) = {σ ∈ Di f f (M) | σ∗ξ = ξ and σ∗gT = (σ∗g)T} and SLT(N+
1,C)=SL(N+1,C)∩Di f f T(M).Any other basis of H0

B(M,(KT
M)−m) gives an embedding

of the form σT◦Ψ|m(KT
M)−1| with σT∈SLT(N+1,C). Now for any subgroup of the weighted

C∗action G0={σT(t)}t∈C∗ of SLT(N+1,C), there is a unique limiting

M∞ = lim
t→0

σT(t)(M)⊂CPN .

As our application of Corollary 6.1, M∞ has its leave space Z∞ = M∞/Fξ which is a
normal projective Kähler orbifold with at worst codimension two orbifold singularities
Σ∞.

Let V be a the Hamiltonian holomorphic vector field whose real part generates the
action by σT(e−s). If Z∞ is normal Fano, there is a generalized Futaki invariant defined
by fZ∞(X) and then a generalized Sasaki-Futaki invariant defined by fM∞(V) as in (6.4),
(6.6). Thus one can introduce the Sasaki analogue of the K-stable on Kähler manifolds
[28, 64, 66].
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Definition 6.1. Let (M,ξ,η,g,ω) be a compact transverse Fano quasi-regular Sasakian manifold
and its leave space (Z,h,ωh) be a normal Fano projective Kähler orbifold and well-formed. We say
that M is transverse K-stable with respect to (KT

M)−m if the generalized Sasaki-Futaki invariant

Re fM∞(V)≥0 or Re fZ∞(X)≥0

for any weighted C∗-action G0={σT(t)}t∈C∗ of SLT(N+1,C) with a normal Fano Z∞=M∞/Fξ

and the equality holds if and only if M∞ is transverse biholomorphic to M. We say that M is
transverse K-stable if it is transverse K-stable for all large positive integer m.

Corollary 6.2 ([12]). Let (M,ξ,η0,g0) be a compact quasi-regular transverse Fano Sasakian man-
ifold of dimension five and (Z0=M/Fξ ,h0,ωh0) be the space of leaves of the characteristic foliation
which is well-formed with codimension two orbifold singularities Σ0. If M is transverse stable,
then under the Sasaki-Ricci flow, M(t) converges to a compact transverse Fano Sasakian manifold
M∞ which is isomorphic to M endowed with a smooth Sasaki-Einstein metric.

Remark 6.1. 1. Note that by continuity method, Collins and Székelyhidi [27] showed
that a polarized affine variety admits a Ricci-flat Kähler cone metric if and only if it
is K-stable. In particular, the Sasakian manifold admits a Sasaki-Einstein metric if
and only if its Kähler cone is K-stable.

2. On the other hand, instead of K-stability on its Kähler cone, one can have the so-
called transverse K-stability on a compact quasi-regular transverse Fano Sasakian
manifold with the space of leaves of the characteristic foliation which is well-formed
and also a normal Fano projective Kähler orbifold.

3. In the upcoming paper [18], under the conic Sasaki-Ricci flow, we will prove the
conic version of Yau-Tian-Donaldson conjecture on a log transverse Fano Sasakian
manifold in which its leave space Z0 is not well-formed. It means that the orb-
ifold structure (Z0,∆) has the codimension one fixed point set of some non-trivial
isotropy subgroup.

Acknowledgements

The first author would like to express his gratitude to Professor Xiaochun Rong for long-
term inspirations such as the Gromov-Hausdorff compactness. Part of this project was
carried out during the third named author’s visit to the NCTS, whose support he would
like to express the gratitude for the warm hospitality.

The first author is supported in part by Funds of the Mathematical Science Research
Center of Chongqing University of Technology (Grant No. 0625199005). The fourth au-
thor partially supported in part by the NSTC of Taiwan. The second author partially sup-
ported by an NSFC 11971415, NSF of Henan Province 252300421497, and Nanhu Scholars
Program for Young Scholars of Xinyang Normal University. The third author partially
supported by the Science and Technology Research Program of Chongqing Municipal
Education. Commission (Grant No. KJQN202201165)



Chang S, Han Y, Lin C and Wu C / J. Math. Study, 58 (2025), pp. 38-61 59

References

[1] Barden D. Simply connected five-manifolds. Ann Math., 1965, 82(2): 365-385.
[2] Berman R, Boucksom S, Eyssidieux P, et al. Kähler-Einstein metrics and the Kähler-Ricci

flow on log Fano varieties. J. Reine Angew. Math., 2019, 751: 27-89.
[3] Berndtsson B. A Brunn-Minkowski type inequality for Fano manifolds and some

uniqueness theorems in Kähler geometry. Invent. math., 2015, 200: 149–200.
[4] Boyer C P, Galicki K. Sasaki Geometry, Oxford Mathematical Monographs. Oxford Uni-

versity Press, Oxford, 2008.
[5] Boyer C P, Galicki K, Simanca S. Canonical Sasakian metrics. Comm. Math. Phys., 2008,

279(3): 705–733.
[6] Bando S, Mabuchi T. Uniqueness of Einstein Kähler metrics modulo connected group

actions, in Algebraic geometry, Sendai 1985. Adv. Stud. Pure Math., 1987, 10: 11–40.
[7] Cao H. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler

manifolds. Invent. Math., 1985, 81: 359–372.
[8] Cheeger J, Colding T H. Lower bounds on the Ricci curvature and the almost rigidity of

warped products. Ann. Math., 1996, 144: 189-237.
[9] Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below

I. J. Differential Geom., 1997, 46: 406-480.
[10] Cheeger J, Colding T H. On the structure of spaces with Ricci curvature bounded below

II. J. Differential Geom., 2000, 54: 13-35.
[11] Cheeger J, Colding T H, Tian G. On the singularities of spaces with bounded Ricci cur-

vature. Geom. Funct. Anal., 2002, 12: 873-914.
[12] Chang D, Chang S, Han Y, et al. Gradient Shrinking Sasaki-Ricci Solitons on Sasakian

Manifolds of Dimension Up to Seven. ArXiv:2210.12702.
[13] Chen X, Donaldson S, Sun S. Kähler-Einstein metrics on Fano manifolds I. J. Amer. Math.

Soc., 2015, 28(1): 183–197.
[14] Chen X, Donaldson S, Sun S. Kähler-Einstein metrics on Fano manifolds II. J. Amer.

Math. Soc., 2015, 28(1): 199–234.
[15] Chen X, Donaldson S, Sun S. Kähler-Einstein metrics on Fano manifolds III. J. Amer.

Math. Soc., 2015, 28(1): 235–278.
[16] Chang S-C, Han Y, Lin C, et al. Convergence of the Sasaki-Ricci flow on Sasakian 5-

manifolds of general type. ArXiv:2203.00374.
[17] Collins T, Jacob A. On the convergence of the Sasaki-Ricci flow, analysis, complex ge-

ometry, and mathematical physics: in honor of Duong H. Phong. Contemp. Math., 644,
Amer. Math. Soc., Providence, RI, 2015: 11–21.

[18] Chang S-C, Li F, Lin C, et al. On the existence of conic Sasaki-Einstein metrics on Log
Fano Sasakian manifolds of dimension five, preprint.

[19] Chang S-C, Lin C, Wu C-T. Foliation divisorial contraction by the Sasaki-Ricci flow on
Sasakian 5-manifolds. Preprint.
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