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Abstract. In this paper, we show that the uniform L*-bound of the transverse Ricci cur-
vature along the Sasaki-Ricci flow on a compact quasi-regular transverse Fano Sasakian
(2n+1)-manifold M. Then we are able to study the structure of the limit space. As con-
sequences, when M is of dimension five and the space of leaves of the characteristic
foliation is of type I, any solution of the Sasaki-Ricci flow converges in the Cheeger-
Gromov sense to the unique singular orbifold Sasaki-Ricci soliton and is trivial one if
M is transverse K-stable. Note that when the characteristic foliation is of type II, the
same estimates hold along the conic Sasaki-Ricci flow.
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1 Introduction

Let (M,7,{,P,g) be a compact Sasakian manifold of dimension 2n+1. If the orbits of the
Reeb vector field ¢ are all closed and hence circles, then integrates to an isometric U(1)
action on (M,g). Since it is nowhere zero this action is locally free, that is, the isotropy
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group of every point in S is finite. If the U(1) action is in fact free then the Sasakian
structure is said to be regular. Otherwise, it is said to be quasi-regular. If the orbits of ¢
are not all closed, the Sasakian structure is said to be irregular [4]. However, by the second
structure theorem [57], any Sasakian structure (,7,®) on (M, g) is either quasi-regular or
there is a sequence of quasi-regular Sasakian structures (M, ¢;,1;,P;,gi) converging in the
compact-open C®-topology to (¢,17,®,9). It means that there always exists a quasi-regular
Sasakian structure (&,17,P) on (M,g).

A Sasakian (2n+1)-manifold is served as the odd-dimensional analogue of Kahler
manifolds. For instance, the Kihler cone of a Sasaki-Einstein 5-manifold is a Calabi-Yau
3-fold. It provides interesting examples of the AdS/CFT correspondence. On the other
hand, the class of simply connected, closed, oriented, smooth 5-manifolds is classifiable
under diffeomorphism due to Smale-Barden [1, 58].

In a compact quasi-regular Sasakian manifold, the Reeb vector field induces a S'-
action which generates the finite isotropy groups. It is the regular free action if the
isotropy subgroup of every point is trivial. In general, as in [19], the space of leaves has
either the codimension at least two fixed point set of every non-trivial isotropy subgroup
or the codimension one fixed point set of some non-trivial isotropy subgroup.

It is our goal to address the related issues on the geometrization and classification
problems of quasi-regular Sasakian manifolds of dimension five with foliation singulari-
ties [16,19].

Along this spirits, in this paper we will focus on the following Sasaki-Ricci flow

gw()=w(t)—RicL ),  w(0)=wy (1.1)

which is introduced by Smoczyk-Wang-Zhang [61] to study the existence of Sasaki 7-
Einstein metrics on Sasakian manifolds. They showed that the flow has the longtime so-
lution and asymptotic converges to a Sasaki #-Einstein metric when the basic first Chern
class is negative (cf (M) <0) or null (c? (M) =0). It is wild open when a compact Sasakian
(2n+1)-manifold is transverse Fano (c? (M) >0). In the paper of [17], Collins and Jacob
proved that the Sasaki-Ricci flow converges exponentially fast to a Sasaki-Einstein metric
if one exists, provided the automorphism group of the transverse holomorphic structure
is trivial. In general, by comparing the Kihler-Ricci flow on log Fano varieties as in [2],
it is hard to deal with because the space of leaves of the characteristic foliation is a polar-
ized, normal projective variety which endowed with the orbifold structure due to (1.3).

In this note, we will assume that M is a compact quasi-regular transverse Fano Sasakian
manifold and the space Z of leaves is well-formed (i.e. M has the foliation singularity of
type I) which means its orbifold singular locus and algebro-geometric singular locus co-
incide, equivalently Z has no branch divisors (see Definition 2.1).

Let (M,7,¢,®,g) be a compact quasi-regular Sasakian (21+1)-manifold and Z=M/ Fz
denote the space of leaves of the characteristic foliation which is well-formed, a normal
projective variety with codimension at least two orbifold singularities ~. Then by the
first structure theorem again, M is a principal S!-orbibundle (V-bundle) over Z which
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is also a Q-factorial, polarized, normal projective variety such that there is an orbifold
Riemannian submersion

m:(M,g) = (Z,w) (1.2)
and
KL, = (KgY). (1.3)

If the orbifold structure of the leave space Z is well-formed, then the orbifold canonical
divisor K%’b and canonical divisor Ky are the same and thus

Ky =m*(¢9*Kz)

with respect to the orbifold charts on (Z,U;, ¢;).

In this paper, we will obtain the crucial estimate on the L*-Bound of the transverse
Ricci curvature under the Sasaki-Ricci flow (1.1) in a compact quasi-regular transverse
Fano Sasakian manifold (M,¢,1o,Po,g0,wo) of dimension five with foliation singulari-
ties of type I. In our upcoming paper [18], we shall deal with the same issue under the
so-called conic Sasaki-Ricci flow in a compact quasi-regular transverse Fano Sasakian
manifold of dimension five with foliation singularities of type II.

Theorem 1.1. Let (M,¢,10,Po,Q0,wo) be a compact transverse Fano quasi-reqular Sasakian
(2n+1)-manifold and its the space Z of leaves of the characteristic foliation be well-formed. Then,
under the Sasaki-Ricci flow (1.1), there exists a positive constant C such that

JulRicp [*w(®)" Ao <C, (1.4)
for all t €]0,00). That is it suffices to show that
Sl VT u(b)feo(8)" Ao < C,

for all t >0 and for some constant C independent of t. Here u(t) is the evolving transverse Ricci
potential.

Furthermore, we will show that the transverse Ricci potentials u(t) which is a basic
function behaves very well as t — co under the Sasaki-Ricci flow. This implies that the
limit of Sasaki-Ricci flow should be the Sasaki-Ricci soliton in the L2-topology.

Theorem 1.2. Let (M,¢,10,Po,g0,wo) be a compact transverse Fano quasi-regular Sasakian
(2n-+1)-manifold and its the space Z of leaves of the characteristic foliation be well-formed. Then,
under the Sasaki-Ricci flow
/ IVIVTulPw(t)" Ao —0,
M
/ (Apu—|VTul?+u—a)w(t)" Ago—0
M

as t— oco. Here a(t) = [, ,ue"w(t)" Atjo.

<=
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Now we are able to study the structure of the limit space:

Theorem 1.3. Let (M;,1;,¢,P;,gi) be a sequence of quasi-reqular Sasakian (2n+1)-manifolds
with Sasaki metrics g;=g! +1;®1; such that for basic potentials ¢;

ni=n+dpe;
and
dm = dﬂ+ Vv —183534)1'.

We denote that (Z;,h;,Ji,wy,) are a sequence of well-formed normal projective orbifolds surfaces
which are the corresponding foliation leave space with respect to (M;,4;,&,®;,;) such that

Wgr = ydi=10" (wy,); Bi=1"(J;)

Suppose that (M;,1;,&,®;,g;) is a compact smooth transverse Fano Sasakian (2n+1)-manifolds
satisfying

/M |Ric;7|pw?/\17 <A,
and

Vol(BglgiT(xi,l)) Z v

for some p>n, A>0, v>0. Then, after passing to a subsequence if necessary, (M;,®;,g;,x;) con-
verges in the Cheeger-Gromov sense to limit length spaces (Moo, Peo,doo, X0 ) and then (Z;,];,hi,
7t(x;)) converges to (Zeo, Joo,Noo, (X o)) such that for any r>0 and p; € M; with p;— Peo € Moo,

Vol(By, (72(pi),r)) = H*" (By, (72(pes), 1)),
Vol(B§,g7 (pi,r)) — %zn(Bglggq (Poo,?)).

Moreover,
Vol(B(pi,r)) = H*" 1 (B(peo,1))
where H™ denotes the m-dimensional Hausdorff measure and

1. M is a S'-orbibundle over the normal projective variety Ze=Meo/ Fs.

2. Moreover, Zo, = RUS such that S is a closed singular set of codimension at least two and
R consists of points whose tangent cones are R*".

3. Furthermore, the convergence on the reqular part of Mo which is a S'-principle bundle over
R in the (C“ﬂLzB’p)-topologyfor any 0 <a <2—7.
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In this note, the central issue is to show the L*-bound of the transverse Ricci curvature
(Theorem 1.1) along the Sasaki-Ricci flow. Then the transverse Ricci potentials u(t) which
is a basic function behaves very well as t — co under the Sasaki-Ricci flow. This implies
that the structure of the limit of Sasaki-Ricci flow should be the Sasaki-Ricci soliton in the
L2-topology.

With its applications, we will state it without the detailed proof as in the final section.
We refer to [12] for some details.

2 Structure theorem and foliation singularities

In this section, we will recall some preliminaries for Sasakian manifolds with foliation
singularities, a type II deformation of the Sasakian structure and the Sasaki-Ricci flow.
We refer to [4,19,35,59], and references therein for some details.

A Riemannian (2n+1)-manifold (M,g,V) is called a Sasaki manifold if the metric
cone (C(M),g,]) := (R" x M, dr*+r%g,]) is Kéhler with the Kahler form w = +/—199r?
and

1 = 0
7=38(¢) and  Z=J(rs).

The function 372 is hence a global Kahler potential for the cone metric. As [r=1]={1} x
M C C(M), we may define the Reeb vector field & on M by ¢=](<) and the contact
1-form # on TM by 1 =g(¢,-). Then ¢ is the unit Killing vector field such that #(&) =
1 and d5(¢,-) =0. The tensor field of type (1,1), defined by

O(Y)=Vy¢

satisfies the condition (Vx®)(Y)=2(&,Y)X—g(X,Y)¢ for any pair of vector fields X and
Y on M. Then such a triple (1,¢,®) is called a Sasakian structure on a Sasakian manifold
(M,g). The first structure theorem on Sasakian manifolds states that

Proposition 2.1 ([4,42,45,57]). Let (M,n,&,®,g) be a compact quasi-reqular Sasakian manifold
of dimension 2n+1 and Z denote the space of leaves of the characteristic foliation F (just as
topological space). Then

1. Z carries the structure of a Hodge orbifold Z=(Z,A) with an orbifold Kihler metric h
and the Kiihler form wy, which defines an integral class in H2, (Z,Z) in such a way that
7:(M,g)— (Z,h,wy,) is an orbifold Riemannian submersion, and a principal S'-orbibundle

(V-bundle) over Z. Furthermore, it satisfies 3d1 = rt*(wy,). The fibers of 7 are geodesics.
2. Zis also a Q-factorial, polarized, normal projective algebraic variety.

3. The orbifold Z is Fano if and only if Ricg > —2. In this case Z as a topological space is
simply connected; and as an algebraic variety is uniruled with Kodaira dimension —oo.
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4. (M,¢,g) is Sasaki-Einstein if and only if (Z,h) is Kihler-Einstein with scalar curvature
dn(n+1).

5. If (M,n,¢,®,g) is reqular, then the orbifold structure is trivial and 7t is a principal circle
bundle over a smooth projective algebraic variety.

For all previous discussions with the special case for n =2, we have the following con-
cerning its foliation singularities:

Definition 2.1 ([19]). 1. Foliation singularities of type I: Let (M,,¢,®,g) be a compact quasi-
regular Sasakian 5-manifold and its leave space (Z,D) of the characteristic foliation be well-
formed. Then Z is a Q-factorial normal projective algebraic orbifold surface with isolated sin-
gularities of a finite cyclic quotient of C>. Accordingly, p € Z is analytically isomorphic to
p€Z=~(0€C?)/uz, where Z, is a cyclic group of order r and its action on such open affine
neighborhood is defined by

Mz, (z1,22) = ({"21,0"22),

where { is a primitive r-th root of unity. We denote the cyclic quotient singularity by 1 (a,b) with
(a,r)=1=(b,r). In particular, the action can be rescaled so that every cyclic quotient singularity
corresponds to a 1 (1,a)-point with (r,a)=1. It is kit (Kawamata log terminal) singularities.

2. Foliation singularities of type II: Let (M,n,¢,®,g) be a compact quasi-reqular Sasakian 5-
manifold and its leave space (Z,A) has the codimension one fixed point set of some non-trivial
isotropy subgroup. In this case, the action

2mtaqi 2mayi

Hz,:(z1,22) = (e 1 z1,e 2 22),

for some positive integers rq, rp whose least common multiple is v, and a;, i =1,2 are integers
coprime to r;, i =1,2. Then the foliation singular set contains some 3-dimensional Sasakian
submanifolds of M. More precisely, the corresponding singularities in (M,n,¢,®,g) is called the
Hopf S'-orbibundle over a Riemann surface Zj,.

3 The Sasaki-Ricci flow

Let (M,7,¢,®,9) be a compact Sasakian (2n+1)-manifold with g(¢,¢) =1 and the inte-
gral curves of ¢ be geodesics. For any point p € M, we can construct local coordinates
in a neighborhood of p which are simultaneously foliated and Riemann normal coordi-
nates [37]. That is, we can find Riemann normal coordinates {x,zl,- --,z""} on a neighbor-
hood U of p, such that % =¢on U. Let {U, }4c4 be an open covering of the Sasakian man-
ifold and 7, : U, — V, CC" be submersions such that 7,0 7'[5_1 g (UnNUg) — 11 (U NUR)
is biholomorphic. On each V,, there is a canonical isomorphism d7t, : D) — Tm(p)V,x for
any p € U,, where D =ker¢ C TM. Since ¢ generates isometries, the restriction of the
Sasakian metric g to D gives a well-defined Hermitian metric g on V,. This Hermitian
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metric in fact is Kahler. More precisely, let z!,---,z"" be the local holomorphic coordi-
nates on V,. We pull back these to U, and still write the same for the horizontal dis-
tribution D locally. Let x be the coordinate along the leaves with ¢ = 2. Then we have

the foliation local coordinate {x,z!,---,z"} on U, and (D®C) is spanned by the fields
Zj= (%Jrﬁhj%),je{l,--.,n} with 1 =dx—/=1hjdz/++/~1hidZ and its dual frame
{ﬂ,dzf, j=1,---,n}. Here h is a basic function such that ah =0and hj= gzh]’ h* 832;21
with the foliation normal coordinate /;(p) =0, hﬂ(p) —5l dh ;(p) =0. Moreover, we have
dﬂ(Za,Zﬁ) diy( 32715, ﬁ) Then the Kahler 2-form w! of the Hermltlan metric g on V,,

which is the same as the restriction of the Levi form dy to D7, the slice {x = constant}
in Uy, is closed. The collection of Kéhler metrics {g!} on {le} is so-called a transverse
Kéhler metric. We often refer to dy as the Kéhler form of the transverse Kahler metric g7
in the leaf space D".

The Kéhler form di on D and the Kihler metric ¢T are defined such that g=¢T +7®7.
Now in terms of the normal coordinate, we have

gT = gigdzidzj.

Here g [—oT (2 The transverse Ricci curvature Ric! of the Levi-Civita connection

9z’ ol )
vi assoc1ated to g7 is defined by Ric! = Ric+2¢T and then RT = R+2n. The transverse
Ricci form is defined to be pT =Ric! (®-,-) = —v/ —1R£dzl AdZ with

2
T __ __

i~ dzioz

logdet(g 13)

and it is a closed basic (1,1)-form pT = p+2d7.

We recall that a p-form 7 on a Sasakian (2n+1)-manifold is called basic if i(¢)y =0
and Lzy =0. Let A be the sheaf of germs of basic p-forms and Q) be the set of all
global sections of Ak. It is easy to check that dv is basic if -y is basic. Set dp = d]Qg . Then

dp:=0p+0p: QZ — Qg“ with dg: Ag’q — Angl,q and 0p: Ag’q — Ag’qﬂ. Moreover
dBdc =V —18353 and d% = (d%)2 =

for df := %\/ —1(9p—p). The basic Laplacian is defined by Ap:= dpdy+dpdp. Tben we
have the basic de Rham complex (()},d5) and the basic Dolbeault complex (Q}",05) and
its cohomology ring Hj(Fz) £ Hj(M,R) of the foliation 7 [33]. Then we can define
the orbifold cohomology of the leaf space Z=M/U(1) to be this basic cohomology ring

H?,(Z,R)= Hj(Fz) and the basic first Chern class c? (M) by ¢f = [—T] And a transverse

orb
Kéahler-Einstein metric (or a Sasaki 77-Einstein metric) means that it satisfies [p7]p=[dn]p

for »=—1,0,1, up to a D-homothetic deformation.
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Now we consider the type II deformations of Sasakian structures (M,,¢,®,g) as fol-
lowings: By fixing the ¢ and varying 7, define 77 =1+dS ¢, for ¢ € QY. Then

dij=dn++v—1030p¢ and @=w++—19pdp¢.

Hence we have the same transversal holomorphic foliation but with the new Kéahler
structure on the Kihler cone C(M) and new contact bundle D with & = %ddc?ﬂ, r=re?.
Since r2 =72 and ¢++/—1r2 =¢—+/=1](¢) is a holomorphic vector field on C(M), so
we have the same holomorphic structure. Finally, by the dgdp-lemma in the basic Hodge
decomposition, there is a basic function F: M — R such that

pT(x,t) — %dﬂ(x,t) = dBd%F =V —1835313.
Now we focus on finding a new 7-Einstein Sasakian structure (M,¢,7, ®,3) with gT=
(glg + (pﬁ)dzldff such that
P! = sdi].
Hence p! —p! = sdpdGp—dpdSF. 1t follows that there is a Sasakian analogue of the
Monge-Ampere equation for the orbifold version of Calabi-Yau Theorem
det (gZ;B + qoaﬁ)

det(g,5)

And we consider the Sasaki-Ricci flow on M x [0,T)

—e #9HE, (3.1)

287 () = ~(Ric” (x,1) 5" (x.1))

which is equivalent to

d
ﬁcpzlogdet(go%%— qoaﬁ)—logdet(go%)—i-%qo—F. (3.2)

4 L*-Bound of the transverse Ricci curvature under the Sasaki-
Ricci flow

In this section, we show the L*-bound of the transverse Ricci curvature under the Sasaki-
Ricci flow.

We follow the line in [68] and [16] to prove this estimate. Note that the flow (1.1) can
be expressed locally as a parabolic Monge-Ampeére equation on a basic Kihler potential
@ asin (3.2):

d
E(P = logdet(ggﬁ%— %E) —logdet(gZB) +¢—u(0). (4.1)
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Here u(0) is the transverse Ricci potential of 79, defined by

R]Z} _gl?l = akélu(O)
which we normalize so that & [, e VG )‘Uo Ao =1. Let u(t) be the evolving transverse
Ricci potential. Then

. 9 _
akaIQ): $g51 :ngz _RIE :akalu. (42)

It follows from this equation that ¢ evolves by ¢(t) =u(t)+c(t), for c(t) depending only
on time t. Then by using c(t) to adjust the initial value ¢(0), we always assume that

¢(0)=co:= V/ e | VTgp( zdt+V/ 0)wg Ano.

Since

00 (5,

u _ _
9t ) 8k81u+8k81ABu,

then we can

V/ ue "w(t)" Ao

such that

aabtl =Agu+tu—a.

Now by Jensen’s inequality, we have a(t) <0 and then there exist a uniform positive
constant C; such that [21]
—Cy<a(t) <0 (43)

for all t>0. Moreover, it follows from the Poincaré type inequality, one can show that a(t)
increases along the Sasaki-Ricci flow, so we may assume

tlggloa(t) = oo

It follows from [21] that

Lemma 4.1. Let (M?"*1,&,¢0) be a compact Sasakian manifold and let g" (t) be the solution of
the Sasaki-Ricci flow (1.1) with the initial transverse metric gt. Then there exists C depending
only on the initial metric such that

[ () lco + 11V T u(B) | co+[1Apu(H)] |0 < C

forall t>0.
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In order to prove the L* bound of transverse Ricci curvature (1.4) under the normal-
ized Sasaki-Ricci flow, it suffices to show that

| VIV bl A<, (4.4)

for all >0 and for some constant C independent of t. We need the following Lemmas.

Lemma 4.2. There exists a positive constant C=C(g(') such that
J 19TV U4 9TV U+ [Ren Fleo(1)" A <€, @5)
M
forall t€[0,00).
Proof. Applying the integration by parts, we have
[ IV wPaty nmo= [ (apuw(t) Ao,
M M
and also
/ IVIVTu2w ()" Ao
M
:/ [(Apu)*— <RiCT,aBu§Bu>]w(t)” Ao
M
:/ [(Apu)*—|VTu>+ <83§Bu,83u53u>]w(t)” Ao
M
< [ 1850+ 9TV U+ [V uo t) Ao
M
Moreover, the L2-bound of the transverse Riemannian curvature tensor follows from uni-

formly bound of the transverse scalar curvature and the Sasaki analogue of the Chern-
Weil theory:

RO

2n=2(p—2)! n+1
gt R =2 (12 D) (RT 2 1) o) Ao

The following integral inequalities hold by using Lemma 4.1 and integration by parts.

Lemma 4.3. There exists a universal positive constant C=C(gl) such that
/ VTV ultw" Ao <C / IV VIVTuP+ VIV uPlw(t) Ao, (4.6)
M M

/];A\VTVTM‘LLU”/\UQ gc/ IV VTV U4 VIV ]2
M
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+IVIVIVTu?)w(t)" Ao, (4.7)
and

/WTvTvTuy%LvavTVTuH|vTvTvTu|2]w(t)”m70
M
<C [ [I9TATuP 4+ VTV ul 4 [Rm" Fleo(t)" Ao

M

4.8)
forall t€[0,00).

Now we can prove a uniform bound of [, \VTﬁTu(t) |*w(t)" A under the Sasaki-Ricci
flow.
Proposition 4.1. There exists a positive constant C=C(gl) such that
/ IV VIVTuPR+ | VIVIY w2+ VIV T u 2w (t)" Ao
M

+ / IV ul + VTV 4o ()" Ao < C, (4.9)
M
forall t€[0,00).

Proof. From Lemma 4.3, it is sufficient to get a uniform bound of [,,|VTATu|?w(t)" Ano
under the Sasaki-Ricci flow. Since

0 —
(at_AB> ABu:ABu—\VTVTuF,
thus
1/0 2 2 T 2 o1, |2
E E_AB (ABM) :(ABM) —|V ABM‘ —ABu]V \Y% u| .
Integrating over the manifold gives
/|VTABu\2w”A170
M
=T 10
:/M[(Agu)z—ABu]VTV u\z—ig(ABu)z]w”/\qo
=T 1 1d
:/M[(Agu)Z—ABMVTV u|2+§(ABu)3]w”/\170—Q%/M(Agu)zw”Ano.

Applying the uniform bound of Agu from Lemma 4.1 and (4.5), we obtain

t+1
/ / (VT Apu2w(s)" Arjods < C, (4.10)
t M
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for all £ >0. Next we compute
d/ |VTAgul?w™ Ao
dt Jm
:/ “VTABu\Z—\VT?TABu]z—]VTVTABM\2+ABu\VTATu\2]w”/\170
M
- /M[<VT|vTvTuy2,vTABu>+<VTvavTu\2,VTABu>]w"myo.
By integration by parts, we obtain
/M(VTWTVTuF,VTABu)w”/\170
1 _
< /M[WTVTABuyZ+vavTABu\Z]wnmo
+c/M[|vTABu|2+|vTvTﬁTu\2]w"myo
and also
/(ﬁT\VTﬁTuF,VTABu)w”AnO
M
1 _
SZ/MHVTVTABIHZ-{—|VTVTABL£’2]CU”/\T]0
+c/M[|vTABu|2+|vTvTﬁTu|2]w"myo.
Therefore, by (4.8) and Lemma 4.1,
d T 2. .n
E/M‘V Agu|“w" Ao
1 _
S—E/MHVTVTABMF—F|VTVTABu|2]w”/\170+C(1+/M|VTABu|2w”/\170)
SC(1+/M\VTABu|2w”/\170).

The required uniform bound of [}, |V T Agu|>w" A1 follows from this and (4.10). O

5 Structure of the limit space

In this section, we will show that the transverse Ricci potentials u(¢) which is a basic
function behaves very well as t — co under the Sasaki-Ricci flow. This implies that the
structure of the limit of Sasaki-Ricci flow should be the Sasaki-Ricci soliton in the L2-
topology. We first define

u(gh) =inf{WT (g™, f): [yefw" A=V},
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where
W f)=(2m) " | (RT+ VT fP+ el M.

M
Note that,

1

ugh< V/ ue "w" Ap.
M

Now under the Sasaki-Ricci flow, for any backward heat equation [21]

0
ajtc:—ABf+|VTf|2+ABu, (5.1)
we have
d 1 _
IWIST 1) = [ (979 ()P4 1975 e ngo 20
M
and then
u(ge) <u(g"(t) <0
for all t>0.

Lemma 5.1. Under the Sasaki-Ricci flow, for a smooth basic function f
| VTV P A <C(sd) [ VTV £ A
M M

Proof. We may assume that [, fe~"w" Anjo=0. It follows from [21, Theorem 8.1], we have
the transverse weighted Poincaré inequality

1 2 —Uu, ,n 1 Tg2,—u, n 1 —u, .n 2
il < il
V/Mfe w /\170_V/M\V flre Hw /\170+(V/Mfe w" A1)
for all basic function f € Cy’(M;R). Thus
2o H W Ao < VI fZe W™ An.
f 1 1
M M
It follows from Lemma 4.1 that
/fzw”Aﬂoﬁc(go)/ VT fPw" Atgo.
M M
Thus
/M\VTf\Zw"AWOI—/MfABfw”Aﬂo

Ly 2, .1 2, .n
Si/mf w /\170+2C/M(A3f) w" Ao
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1 T2, 0 / 2 n
< Z
_2/M|V flrw" Ao+2C M(ABf) w" Ao
and
J IV FPw" A <Clso) [ (B A,
On the other hand,
[ VTSR A= [ (Asf)P=RicT (YT, VT )" Arg
M M
= [ (s =V fR)" Ao+ [ VIV VY] fo" Ao
= [ (88~ V" fP)e" A
=T =T .
_/va w(ApfVT 4] FVIVT )" Ao
< [, (@829 A
1 _
+ [ (Baf P45 9TV RV u PV R A
1
< [ @MsfP+5 VT fRCIVT R A
and then

[ VIV R A < [ (48002 4+2CI9T FR)w" Ay

<C [ (8af " Ao
<C(g) | V7V P A 0
Theorem 5.1. Under the Sasaki-Ricci flow
/OOO/M\VTVTMZw(t)”/\ﬂQ/\dt<c>o. (5.2)
In particular,
/M\VTVTu\zw(t)”Nyo —0 (5.3)

as t— oo.

Proof. Let fi be a minimizer of p (g7 (k)) with [, e fiw" A1jo=V and fi(t) be the solution
of the backward heat equation (5.1) on the time interval [k—1,k]. Then

1 [k ToT ¢ |2 T 2\ fi o T T
V/k_l/M(W VI P+ VIV (- fi)[2)e " Ao Adt < u(gT (k) — (T (k—1)).
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Hence by using 1(¢7(¢)) <0
[e] k .
Y [ VT AR (a fo) P Ao ndt < Clgh).
k=1""%"

On the other hand, by applying the above estimate and Lemma 5.1 to (u— fi), we have

/ / IVIVTulPw(t)" AgoAdt
0o Jm
<Y [ @IVTVT AP 2 VT (1= f) P Ao ndt
k=1"M
<Y [ VTV AP2CIV Y (u= f)P)w" Aot
k=1"M
<C(80)-
This is the estimate (5.2). Next, it follows from the straight computation that
9\ oToT, 2
at\V Viul
=Ag|VIVTuP — |VIVIVTu — [V VIV u—2RmT (VIVTU, V'V 1)
and
d/ IVIVTulPw(t)" Ao
dt Jm
S/M[(||Vu(t)!|2co+||ABu(f)||co)|VTVTM\2+|VTVTVTM|2
+[Vu(t)[[z[Rm" Pla(£)" Aro.

Then, from Lemmas 4.1-4.2 and Proposition 4.1, we have

i :
5 | VTV Pt Apo < C(sh).

Hence i
/ IVIVTu2w(t)" Ao —0
M

as t— oo, O]

Similarly, we have
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Theorem 5.2. Under the Sasaki-Ricci flow,

t+1
/ /\VT(ABu—\VTulz—i—u)]zw(t)”/\no/\ds—m (5.4)
¢ M
as t — oo and then
/(ABu—|VTu\2+u—a)2w(t)”/\170—>0 (5.5)
M
as t— oo.

Proof. Note that by the transverse Ricci potential relation
=T =T
Vidpu—|VTul?+u)=V; VIVu-VIViuv;u
and then
=T =T
VT (Apu—|VTulP+u) ? <2(|\VIVulP [V ul+|V; VIV]ul?).

In order to derive (5.4), it suffices to prove that
s
/ / V] VIV T ulw(t)" Ao Ads —O. (5.6)
t JMm

Since the Reeb vector field and the transverse holomorphic structure are both invari-
ant, all the integrands are only involved with the transverse Kéhler structure w(t) and
basic functions u(t). Hence, under the Sasaki-Ricci flow, when one applies integration by
parts, the expressions involved behave essentially the same as in the Kédhler-Ricci flow.
Hence (5.6) follows easily from subsection 4.1 and [68, Proposition 3.2].

Next we denote Agu—|VTu|>*+u—a=H with [,,He "w(t)" A1jp=0. Then, by weighted
Poincaré inequality ([22, Theorem 1.1]) along the Sasaki-Ricci flow

2n—1
2(2n+1) n+1
([ 0w am) ™ <csteim [ AIVTFP+Awan 62
for every f € Wy*(M) and the uniform bound of u, we have

/ H2w(£)" Any gc/ IVTHPw ()" A
M M

and then -
/ / H?w(t)" Ao Adt—0
t M

as t — 00. Since

JoH da
—=AgH+H——+|VIVTu?
o pH+ dt—|—|V Viul7,
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it follows from Proposition 4.1 that
i 2 n — _ ToT,, 12 n
T MH w(t)" A= M2H(ABH+H +|V Viul*+= HABu) (£)" Ao
g/ 2H(H—|—\VTVTulz—i—EHABu)w(t)”/\no
M
g(c+|ABu|2)/ sz(t)"/\770+/ \VIVTultw(t)" Ao
M

1+/ H2 /\1’]0

Thus p
- 2 n < / 2 n
dt/MH w(®) A< C(1+ [ Hw(®)" Ao)
and
/(ABu—|VTu|2+u—a)2w(t)”/\170—>O
M
as t— oo. O

Now by the first structure theorem on Sasakian manifolds, M is a principal S!-orbibundle
(V-bundle) over Z which is also a Q-factorial, polarized, normal projective orbifold such
that there is an orbifold Riemannian submersion 7t:(M,g,w)—(Z,h,wy,) with g=¢T+1®7,
¢" =" (h); tdy = *(wy). The orbit &, is compact for any x € M, we then define the
transverse distance function as

dT(x,y) £ dg(gngy)r

where d is the distance function defined by the Sasaki metric g. Then

d" (x,y) =dy(7(x), ().

We define a transverse ball Bz ¢(x,r) as follows:

Beg (o) = {y:d" (x,y) <r} = {y:d(m(x),7(y)) <7}
Based on Perelman’s non-collapsing theorem for a transverse ball along the unnormaliz-

ing Sasaki-Ricci flow, it follows that

Lemma 5.2 ([21, Proposition 7.2], [41, Lemma 6.2]). Let (M?"1,&,¢¢) be a compact Sasakian
manifold and let g'(t) be the solution of the unnormalizing Sasaki-Ricci flow with the initial
transverse metric gt Then there exists a positive constant C such that for every x € M, if |ST| <
r~2on Bg o(1) (x,7) for r € (0,r0], where rq is a fixed sufficiently small positive number, then

Vol(Bg (1) (x,7)) > Cr,

Moreover, the transverse scalar curvature RT and transverse diameters d;T () e uniformly bounded
under the Sasaki-Ricci flow. As a consequence, there is a uniform constant C such that

diam(M,g(t)) <C.



Chang S, Han Y, Lin C and Wu C / J. Math. Study, 58 (2025), pp. 38-61 55

Then, Theorem 1.3 follows easily from the Cheeger-Colding-Tian structure theory for
Kéhler orbifolds [11,68] for a transverse ball along the Sasaki-Ricci flow.

6 Applications

By the convergence theorem in Theorem 1.3, we have the regularity of the limit space:
We define a family of Sasaki-Ricci flow g/ (t) by

(M,gf () =(Mg" (ti+1))
for t>—1and t;— oo and for g (t) =" (h;(t))
(Z,hi(t)) = (M,h;(t;i+t)).
Now for the associated transverse Ricci potential u;(t) as in Lemma 4.1, we have
[ti ()] lco + 11V Tui (B) ] co+[ | Apui(£) ]| o < C.

Moreover, it follows (5.3) that

/ 7T ulw(t) Ao —0
M

as i — co. Furthermore, by Theorem 1.1 and a convergence Theorem 1.3, passing to a
subsequence if necessary, we have at t =0,

(M8 (0)) = (Moo, 8o, lco)
such that
(Z,hl(O)) — (Zoo,hoo;dhm)
in the Cheeger-Gromov sense. Moreover,

(67(0),15(0) 5 (g7 1) 61)

on (M )reg Which is a S'-principle bundle over R. For the solution (M,w(t),g"(t)) of
the Sasaki-Ricci flow and the line bundle (KI,)~1,h(t) = w"(t)) with the basic Hermitian
metric h(t), we work on the evolution of the basic transverse holomorphic line bundle
((KL)~™ h™(t)) for a large integer m such that (K1,)~™ is very ample. We consider the
basic embedding which is S!-equivariant with respect to the weighted C*action in CNn+1

¥: M — (CPN", wrs)

defined by the orthonormal basic transverse holomorphic section {0y,07,...0n } in Hg (M,

(K}C/I)fm) with N, :dlmHg(M,(K}\ﬂ/I)fm) —1 with fM(Ui,@>hn;(t)wn(t) A1 :51‘]'.
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Define
Nm

Fn(x,1):= ;}I!Uallﬁm(ﬂ- (62)

Note that, under these notations, the curvature form of the Chern connection is Ric(h(t))=
mcw(t). Then the following result is a Sasaki analogue of the partial C-estimate which
was obtained in the Kahler-Ricci flow [68, Theorem 5.1] and the proof there does carry
over to our Sasaki setting due to the first structure theorem again on quasi-regular Sasakian
manifolds.

Lemma 6.1. Suppose (6.1) holds, we have

1rt}f;g{4fm (x,t;)>0 (6.3)

for a sequence of m — co.

Finally, as a consequence of the first structure theorem for Sasakian manifolds and the
partial CO-estimate [12], the Gromov-Hausdorff limit Z, is a variety embedded in some
CPY and the singular set S is a normal subvariety [63, Theorem 1.6]. This will imply the
following;:

Corollary 6.1 ([12]). Let (M,{,10,80) be a compact quasi-reqular transverse Fano Sasakian man-
ifold of dimension five and (Zo = M/ Fg,ho,wp,) denote the space of leaves of the characteristic
foliation which is a normal Fano projective Kihler orbifold surface with codimension two orbifold
singularities Xo. Then, under the Sasaki-Ricci flow (1.1), (M(t),¢,n(t),g(t)) converges to a
compact quasi-regular transverse Fano Sasakian orbifold manifold (Mes,G,1eo,Sc0) With the leave
space of orbifold Kihler manifold (Zeo = Moo/ Fg,heo) which can have at worst codimension two
orbifold singularities Loo. Furthermore, g7 (t;) converges to a gradient Sasaki-Ricci soliton orb-
ifold metric g%, on Moo with g% = 11* (heo) such that he, is the smooth Kihler-Ricci soliton metric
in the Cheeger-Gromoov topology on Zes\Zeo. Furthermore, Mo is a S*-orbibundle over Zo, which
is a normal projective variety and the singular set S of Z« is a codimension two orbifold singu-
larities.

As the final consequence, we will show that the gradient Sasaki-Ricci soliton orbifold
metric is a Sasaki-Einstein metric if M is transverse K-stable. This is an old dimensional
counterpart of Yau-Tian-Donaldson conjecture on a compact K-stable Kdhler manifold
[13-15, 66]. It can be viewed as a Sasaki analogue of Tian-Zhang’s [68] and Chen-Sun-
Wang’s result [24] for the Kdhler-Ricci flow.

For the Hamiltonian holomorphic vector field V, d7t, (V) is a holomorphic vector field
on V, and the complex valued Hamiltonian function uy := \/—7117(V) satisfies dguy =
—@ivdiy. Assume we normalize that ¢®(M) = [Jd#]p, there exists a basic function
such that Ric” (x,t) —w(x,t) = v/—19pdph,,. The Sasaki-Futaki invariant [5,35]

Fu(V)= /MV(hw)w”/\iy (6.4)
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is only depends on the basic cohomology represented by d#, and not on the particular
transverse Kéahler metric. It is clear that f); vanishes if M has a Sasaki-Einstein metric in
its basic cohomology class. One also have the following reformulation:

fm(V)= —n/MuV(RicZJ —w)W" A=~ /M“V(RZ; —n)w" Am. (6.5)

Let (M,¢&,1,8,w) be a compact transverse Fano quasi-regular Sasakian manifold and
its leave space Z be the normal Fano projective Kdhler orbifold and well-formed. Fol-
lowing the notions as in [35] and [32], the Sasaki-Futaki invariant can be extended to
the generalized Sasaki-Futaki invariant which has the following reformulation involving
(Z ,h,wh):

fm(V)=fz(X) (6.6)
with
fZ(X):—n/ZQX(Ricwh—wh)wh”_l:—/ZOX(Rwh—n)wh”.

By applying first structure theory for a quasi-regular Sasakian manifold, there exists a
Riemannian submersion, S!-orbibundle 77: M — Z, such that K}, = 7* (Ky?) = 7 (¢*Kz).
Then by the CR Kodaira embedding theorem [56], there exists an embedding ¥ : M —
(CPN,wrs) defined by the basic transverse holomorphic section {sg,s1,*,sn} of HY(M,
(KI;)~™) which is S'-equivariant with respect to the weighted C*-action in CN™! with
N :dimHg (M, (K{A)*m) —1 for a large positive integer m. In fact, in our situation Z is also
normal Fano, there is an embedding e P(H®(Z,Kz=™)). Define ¥y =
L such that

¥ (kT )| :M—P(HY(M,(KL,)™™).

We define Dif fT(M) = {o € Diff(M) | 0.¢ =¢ and ¢*¢" = (c*¢)T} and SLT(N+
1,C) =SL(N+1,C)NDiffT(M).Any other basis of H}(M, (KL,)™™) gives an embedding
of the form ‘TTOIF\m(K{A)—l\ with T €SLT(N+1,C). Now for any subgroup of the weighted

C*action Go= {07 (t) }tec+ of SLT(N+1,C), there is a unique limiting

w=limo T (t)(M) Cc CPN.
t—0
As our application of Corollary 6.1, M has its leave space Ze = Mo/ Fz which is a
normal projective Kahler orbifold with at worst codimension two orbifold singularities
2ioo-

Let V be a the Hamiltonian holomorphic vector field whose real part generates the
action by o (e~*). If Z is normal Fano, there is a generalized Futaki invariant defined
by fz..(X) and then a generalized Sasaki-Futaki invariant defined by fu (V) as in (6.4),
(6.6). Thus one can introduce the Sasaki analogue of the K-stable on Kéhler manifolds
[28,64,66].
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Definition 6.1. Let (M,¢,1,8,w) be a compact transverse Fano quasi-reqular Sasakian manifold
and its leave space (Z,h,wy,) be a normal Fano projective Kihler orbifold and well-formed. We say
that M is transverse K-stable with respect to (K},) ™™ if the generalized Sasaki-Futaki invariant

Refp,(V)>0 or Refz (X)>0

for any weighted C*-action Go={0T (t) }+ec+ of SLT (N+1,C) with a normal Fano Ze=Me/ Fr
and the equality holds if and only if M is transverse biholomorphic to M. We say that M is
transverse K-stable if it is transverse K-stable for all large positive integer m.

Corollary 6.2 ([12]). Let (M,{,10,80) be a compact quasi-reqular transverse Fano Sasakian man-
ifold of dimension five and (Zo=M/ F,ho,wy, ) be the space of leaves of the characteristic foliation
which is well-formed with codimension two orbifold singularities Xo. If M is transverse stable,
then under the Sasaki-Ricci flow, M(t) converges to a compact transverse Fano Sasakian manifold
M, which is isomorphic to M endowed with a smooth Sasaki-Einstein metric.

Remark 6.1. 1. Note that by continuity method, Collins and Székelyhidi [27] showed
that a polarized affine variety admits a Ricci-flat Kdhler cone metric if and only if it
is K-stable. In particular, the Sasakian manifold admits a Sasaki-Einstein metric if
and only if its Kdhler cone is K-stable.

2. On the other hand, instead of K-stability on its Kdhler cone, one can have the so-
called transverse K-stability on a compact quasi-regular transverse Fano Sasakian
manifold with the space of leaves of the characteristic foliation which is well-formed
and also a normal Fano projective Kdhler orbifold.

3. In the upcoming paper [18], under the conic Sasaki-Ricci flow, we will prove the
conic version of Yau-Tian-Donaldson conjecture on a log transverse Fano Sasakian
manifold in which its leave space Zj is not well-formed. It means that the orb-
ifold structure (Zy,A) has the codimension one fixed point set of some non-trivial
isotropy subgroup.
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