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Abstract. In this paper, the notion of hyperbolic ellipsoids in hyperbolic space is in-
troduced. Using a natural orthogonal projection from hyperbolic space to Euclidean
space, we establish affine isoperimetric type inequalities for static convex domains in
hyperbolic space. Moreover, equality of such inequalities is characterized by these
hyperbolic ellipsoids.
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1 Introduction

The classical Minkowski’s second inequality [34, Thm. 7.2.1] states that if K⊂Rn is a con-
vex body (that is, a compact, convex set with non-empty interior) with smooth boundary
∂K and H is the mean curvature of ∂K, then

Area(∂K)2≥ n
n−1

Vol(K)
∫

∂K
HdA, (1.1)

with equality if and only if K is a ball. This inequality was later generalized by Reilly [31]
to compact Riemannian manifolds with nonnegative Ricci curvature and convex bound-
ary. Using the generalized Reilly’s formula [30], Xia [40] proved the following Minkowski
type inequalities in hyperbolic space.
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Theorem 1.1 ([40]). Let K be a smooth bounded domain in Hn. Let V(x)=coshr, where r(x)=
d(x,p0) is the geodesic distance to a fixed point p0 ∈Hn. Assume that the second fundamental
form of ∂K satisfies

hij ≥
V,ν

V
gij. (1.2)

Then there holds (∫
∂K

VdA
)2

≥ n
n−1

∫
K

Vdvol·
∫

∂K
VHdA, (1.3)

where dvol is the volume element of Hn. Equality holds if and only if K is a geodesic ball.

The condition (1.2) is called static convexity, which was introduced by Brendle and
Wang [9] for its correspondence in static space-time. In particular, when K is a smooth
bounded domain in Rn, then the weight function V≡1 and the static convexity (1.2) turns
out to be the usual convexity (i.e. hij≥0), while the inequality (1.3) reduces to the classical
Minkowski’s second inequality (1.1). Moreover, it was proved in [40] that the equality in
(1.3) is attained for all geodesic balls, not necessarily the geodesic balls centered at p0.

Another family of sharp geometric inequalities for static convex domains in hyper-
bolic space was obtained by using locally constrained inverse curvature flows [16].

Theorem 1.2 ([16]). Let K be a smooth bounded domain in Hn. Assume that ∂K is static convex
and starshaped with respect to an interior point p0 in K. For each k=0,1,.. .,n, there holds

∫
∂K

VHkdA≥ n
(∫

K
Vdvol

) n−1−k
n
(
|Bn| 2

n +

(∫
K

Vdvol
) 2

n
) k+1

2

, (1.4)

where Hk is the normalized k-th mean curvature of the hypersurface ∂K. Equality holds in (1.4) if
and only if K is a geodesic ball centered at p0.

For k=0, the inequality (1.4) can be considered as a weighted isoperimetric inequality.
It was first proved by Scheuer and Xia [33], and recently it was generalized to bounded
domains with C1 boundary by Li and Xu [24]. For k= 1, the inequality (1.4) also holds
for starshaped domains with mean convex boundary, see [33]. Moreover, the inequality
(1.4) with k=1 also holds for merely static convex domains, i.e., p0 is not necessarily an
interior point of K, see [9, Thm. 4, case 4]. Using the well-known Minkowski’s identity

n
∫

K
Vdvol=

∫
∂K

V,νdA,

the inequality (1.4) with k=1 can be rewritten as

∫
∂K

H1(κ̃)dA≥ n|Bn| 2
n

(∫
K

Vdvol
) n−2

n

, (1.5)
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where κ̃i=Vκi−V,ν and H1(κ̃)=VH1−V,ν. This inequality (1.5) can be compared with the
volumetric Minkowski inequality in Euclidean space, which holds for smooth bounded
domain with mean convex boundary, see [1, Thm. 1.5]. As a natural analog of volume
functional in Euclidean space, the weighted volume

∫
K Vdvol appears in the geometric in-

equalities in hyperbolic space such as (1.3) and (1.4), as well as the Heintze-Karcher type
inequalities in Riemannian manifolds [7] (see also [26, 30]). On the other hand, different
from the translation invariance of the Euclidean volume, the weighted volume depends
on the choice of the origin p0. Therefore, it is natural to classify the sharp geometric in-
equalities in hyperbolic space into the following two families. One family consists of the
translation-invariant geometric inequalities, that is, the equality is attained by geodesic
spheres, see, e.g., [2,3,13,17–19,23,36]; The other one family of geometric inequalities de-
pends on the choice of the origin p0, and in this case the equality is attained by geodesic
balls centred at p0, see [8, 11, 14, 16, 19, 20, 22, 25, 30, 40].

On the other hand, affine isoperimetric inequalities relating two functionals associ-
ated with convex bodies such that the ratio of these functionals is invariant under the
non-degenerate linear transformations. These inequalities are of great importance in both
convex geometry and affine differential geometry, and they are more powerful than their
Euclidean relatives. Moreover, due to the affine invariance, equality case of these inequal-
ities is attained at ellipsoids.

The main purpose of this paper is to present affine isoperimetric type inequalities in
hyperbolic space. First of all, we need to introduce the notion of hyperbolic ellipsoid as
the natural counterpart of ellipsoid in Euclidean space. A smooth bounded domain K in
Hn is called a hyperbolic ellipsoid if there exists a point p0∈Hn such that the image πp0(K)
is an ellipsoid in Rn, where πp0 : Hn →Rn is an orthogonal projection with respect to p0
given by (2.2). The hyperbolic centroid of a smooth bounded domain K in Hn is the unique
point defined by

cen(K)=

∫
K Xdvol(

−⟨
∫

K Xdvol,
∫

K Xdvol⟩
) 1

2
, (1.6)

see Proposition 2.1.
The first result of this paper is the following geometric inequality in hyperbolic space,

which can be considered as a natural counterpart of the classical affine isoperimetric in-
equality in Euclidean space.

Theorem 1.3. Let K be a smooth bounded domain in Hn. Assume that the boundary ∂K is static
convex with respect to a point p0 in Hn. Then there holds

∫
∂K

Hn−1(κ̃)
1

n+1 dA≤n|Bn| 2
n+1

(∫
K

Vdvol
) n−1

n+1

, (1.7)

where Hn−1(κ̃)=∏n−1
i=1 (Vκi−V,ν). Equality holds if and only if K is a hyperbolic ellipsoid.
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Our second result is the following.

Theorem 1.4. Let K be a smooth bounded domain in Hn and p0 is its hyperbolic centroid. As-
sume that the boundary ∂K is static convex with respect to this point p0. Then the following
inequalities hold:

(i) If p>0, then

∫
∂K
(V,ν)

(1−p)n
n+p Hn−1(κ̃)

p
n+p dA≤n|Bn|

2p
n+p

(∫
K

Vdvol
) n−p

n+p

. (1.8)

(ii) If −n< p<0, then

∫
∂K
(V,ν)

(1−p)n
n+p Hn−1(κ̃)

p
n+p dA≥n|Bn|

2p
n+p

(∫
K

Vdvol
) n−p

n+p

. (1.9)

(iii) If p<−n and ∂K is strictly static convex with respect to p0, then

∫
∂K
(V,ν)

(1−p)n
n+p Hn−1(κ̃)

p
n+p dA≥nc

np
n+p |Bn|

2p
n+p

(∫
K

Vdvol
) n−p

n+p

, (1.10)

where c>0 is a non-sharp constant.

Equality holds in (1.8) or (1.9) if and only if K is a hyperbolic ellipsoid.

We should mention that the left-hand sides of these inequalities (1.7)–(1.10) are nat-
ural analogs of the affine surface area and Lp affine surface area in Euclidean space, see
(3.9) and (3.12) in §3.

We also obtain the following Blaschke-Santaló type inequality in hyperbolic space,
which can be considered as a natural analog of Blaschke-Santaló inequality in Euclidean
space. To state our result, for any subset K in Hn, the hyperbolic polar body K◦ of K with
respect to p0 is defined by

K◦ :=
⋂

Y∈K

{X∈Hn | coshd(X,p0)coshd(Y,p0)≤coshd(X,Y)+1}. (1.11)

Different from the (usual) polar body of a strictly convex body in hyperbolic space which
lies in the de Sitter space, if the smooth bounded domain K is static convex with respect to
p0, then its hyperbolic polar body K◦ is also static convex with respect to p0, see Corollary
2.1.

The following weighted volume product inequality in hyperbolic space can be com-
pared with the volume product inequality in space forms [12] (see also a different exten-
sion by Hu and Li [18]).
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Theorem 1.5. Let K be a bounded domain in Hn with smooth boundary ∂K. Assume that ∂K is
static convex with respect to its hyperbolic centroid p0. Let K◦ be the hyperbolic polar body of K
with respect to p0. Then there holds∫

K
Vdvol·

∫
K◦

Vdvol≤|Bn|2. (1.12)

Equality holds if and only if K is a hyperbolic ellipsoid centred at p0.

Our results can be also established for static convex domains in the unit sphere, while
in this case, V(x)=cosr(x) and r(x)=d(x,p0) is the geodesic distance from x to p0 in the
sphere.

The paper is organized as follows. In Section 2, we use the hyperboloid model to
define the orthogonal projection from hyperbolic space to Euclidean space. Using this or-
thogonal projection, we explore the relations between hypersurfaces in hyperbolic space
and its orthogonal projection in Euclidean space. Moreover, the hyperbolic centroid of
a smooth bounded domain in hyperbolic space are defined. In Section 3, we review the
classical affine isoperimetric inequalities in Euclidean space. In order to establish their
hyperbolic analogs, we introduce the hyperbolic affine transformations, hyperbolic Lp-
affine surface area, hyperbolic affine support function and hyperbolic polar bodies. In
Section 4, we give the proofs of Theorems 1.3–1.5.

2 Preliminaries

2.1 Hyperboloid model of hyperbolic space

The Minkowski space Rn,1 is the (n+1)-dimensional vector space Rn+1 equipped with
the Minkowski inner product

⟨X,Y⟩= ⟨(x0,x),(y0,y)⟩=−x0y0+
n

∑
i=1

xiyi,

where x=(x1,. . .,xn), y=(y1,. . .,yn)∈Rn. The hyperboloid model of the hyperbolic space
Hn is the upper sheet of the hyperboloid in the Minkowski space Rn,1, that is,

Hn ={X=(x0,x)∈Rn,1 | ⟨X,X⟩=−1, x0>0}.

For any point X =(x0,x)∈Hn, it follows from the relation −1= ⟨X,X⟩=−x2
0+|x|2 and

x0>0 that X=(
√

1+|x|2,x).
Let N=(1,0)∈Hn. The orthogonal projection with respect to N is defined by

π :Hn →Rn,

(
√

1+|x|2,x) 7→ x, (2.1)
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Figure 1: Orthogonal projection π

see Fig. 1. In general, for any point p0 = (x0,x)∈Hn, there exists a unique hyperbolic
translation Tp0 ∈ Isom(Hn) which sends p0 to N=(1,0). Then the orthogonal projection
with respect to this point p0 is given by

πp0 =π◦Tp0 . (2.2)

For any bounded domain K with smooth boundary ∂K in Hn, the orthogonal projec-
tion K̂=πp0(K) with respect to a point p0∈Hn is a smooth bounded domain in Rn. This
projection was first proposed by Gibbons [15] to prove the Penrose inequality for general
surfaces in the Minkowski spacetime. It is also called by Gibbons’ projection, which can
be used to define the quasi-local mass in general relativity [37,38]. Brendle and Wang [9]
also employed this projection to establish a Penrose type inequality for 2-surfaces in a
static convex timelike hypersurface in a static spacetime, see also [28]. In particular, the
static convexity of K in this static spacetime implies the convexity of its projection K̂ in
Rn, see [9, P. 36]. In the case of hyperbolic space, we show that the static convexity of ∂K
with respect to p0 is equivalent to the convexity of ∂̂K :=πp0(∂K) in Euclidean space, see
Corollary 2.1.

Using the geodesic polar coordinates with respect to N=(1,0), the hyperbolic space
Hn can be expressed as

X=(
√

1+|x|2,x)=(coshr,sinhrθ),

where θ ∈ Sn−1, r is the geodesic distance to N in Hn. Denote by r̂ = |x| the Euclidean
distance of x to the origin o=(0,.. .,0) in Rn. It is clear that the hyperbolic radius r and
the Euclidean radius r̂ are related by

r̂=sinhr. (2.3)

Let {∂1,. . .,∂n−1} be an orthonormal basis of the tangent space Tx ∂̂K, and let ν̂ be the
unit outward normal of ∂̂K at the point x∈ ∂̂K, respectively. The induced metric and the
support function of ∂̂K in Rn are given by

ĝij =∂ix ·∂jx=δij, û= x · ν̂,



68 Hu Y, Li H, Wan Y and Xu B / J. Math. Study, 58 (2025), pp. 62-81

where · denotes the inner product of Rn. Then the second fundamental form ĥij and the

Weingarten matrix ĥj
i can be expressed by

ĥij =−∂i∂jx · ν̂, ĥj
i = ĝjk ĥki.

Lemma 2.1. Let ∂K be a smooth hypersurface in Hn. Let ∂̂K :=π(∂K) be the orthogonal projec-
tion of ∂K with respect to N=(1,0) in Rn.

(i) The induced metric gij satisfies

gij =δij−
(x ·∂ix)(x ·∂jx)

1+|x|2 . (2.4)

(ii) The unit outward normal ν satisfies

ν=
(
√

1+|x|2û,ûx+ ν̂)

(1+û2)
1
2

. (2.5)

(iii) The support function u satisfies

u=
(

1+|x|2
1+û2

) 1
2

û. (2.6)

(iv) The second fundamental form h=(hij) satisfies

hij =
1

(1+û2)
1
2

[
ĥij+ûδij−

û(x ·∂ix)(x ·∂jx)
1+|x|2

]
. (2.7)

(v) The Weingarten matrix W=(hj
i)=(hikgkj) satisfies

hj
i =

ĥj
i+ûδ

j
i

(1+û2)
1
2
+

ĥk
i (x ·∂kx)(x ·∂jx)

(1+û2)
3
2

. (2.8)

Proof. (i) (2.4) follows from

gij =⟨∂iX,∂jX⟩=δij−
(x ·∂ix)(x ·∂jx)

1+|x|2 ,

where we used ∂iX=( x·∂ix√
1+|x|2

,∂ix).

(ii) (2.5) was proved in [24, Lem. 2.2].
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(iii) As X=(
√

1+|x|2,x)=(coshr,sinhrθ), we have

sinhr∂rX=sinhr(sinhr,coshrθ)=

(
|x|2,

√
1+|x|2x

)
. (2.9)

By (2.9) and (2.5), we obtain

u= ⟨sinhr∂rX,ν⟩

=

〈
(|x|2,

√
1+|x|2x),

(
√

1+|x|2û,ν̂+ûx)

(1+û2)
1
2

〉

=

(
1+|x|2
1+û2

) 1
2

û.

(iv) (2.7) follows from

hij =−⟨∂i∂jX,ν⟩

=−
〈
(∂i∂j

√
1+|x|2,∂i∂jx),

(
√

1+|x|2û,ν̂+ûx)

(1+û2)
1
2

〉

=
ĥij

(1+û2)
1
2
−

û(∂i∂jx ·x)
(1+û2)

1
2
+

û
√

1+|x|2

(1+û2)
1
2

∂i∂j

√
1+|x|2

=
1

(1+û2)
1
2

[
ĥij+ûδij−

û(x ·∂ix)(x ·∂jx)
1+|x|2

]
.

(v) Using gikgkj =δi
j, it is easy to deduce that

gij =δij+
(x ·∂ix)(x ·∂jx)

1+û2 .

Then we have

hj
i = gjkhki =

ĥj
i+ûδ

j
i

(1+û2)
1
2
+

ĥk
i (x ·∂kx)(x ·∂jx)

(1+û2)
3
2

.

Using Lemma 2.1, we have

Lemma 2.2. Let dvol (resp. dv̂ol) and dA (resp. dÂ) be the volume element and surface area
element of K⊂Hn (resp. K̂=π(K)⊂Rn).

(i) The volume elements of K and K̂ satisfy

Vdvol= dv̂ol. (2.10)
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(ii) The surface area elements of K and K̂ satisfy

dA=

(
1+û2

1+|x|2

) 1
2

dÂ. (2.11)

(iii) The second fundamental forms of ∂K and ∂̂K satisfy

Vhij−V,νgij =

(
1+|x|2
1+û2

) 1
2

ĥij. (2.12)

(iv) The Gauss curvatures of ∂K and ∂̂K satisfy

Hn−1(κ̃)=

(
1+|x|2
1+û2

) n+1
2

Hn−1(κ̂), (2.13)

where κ̃i = Vκi−V,ν, and κi (resp. κ̂i) are the principal curvatures of ∂K ⊂ Hn (resp.
∂̂K⊂Rn).

Proof. Formulas (2.10) and (2.11) have been proved in [24, Lem. 2.1 & 2.3]. To deduce
(2.12), it follows from (2.4), (2.6) and (2.7) that

Vhij−V,νgij =
√

1+|x|2hij−
√

1+|x|2

(1+û2)
1
2

ûgij

=

(
1+|x|2
1+û2

) 1
2

ĥij.

Finally, by using (2.4), we have

det(gij)=1− |x⊤|2
1+|x|2 =

1+|û|2
1+|x|2 .

Then (2.13) follows from

Hn−1(κ̃)=
det(Vhij−V,νgij)

det(gij)

=

(
1+|x|2
1+û2

) n+1
2 det(ĥij)

det(ĝij)

=

(
1+|x|2
1+û2

) n+1
2

Hn−1(κ̂).
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Corollary 2.1. A smooth bounded domain K in Hn is (resp. strictly) static convex with respect
to p0 if and only if its orthogonal projection K̂=πp0(K) in Rn is (resp. strictly) convex.

Proof. For any p0 ̸=N, we use the hyperbolic translation Tp0 such that Tp0(p0)=N. Then
by πp0 =π◦Tp0 due to (2.2), we have Tp0(K) is static convex with respect to Tp0(p0)=N.
Moreover, it follows from (2.12) that Tp0(K) is static convex with respect to Tp0(p0)=N if
and only if K̂=πp0(K)=π◦Tp0(K) is convex in Rn.

2.2 Hyperbolic centroid

Recall that the centroid of a smooth bounded domain K̂ in Rn is defined by

cen(K̂)=

∫
K̂ xdv̂ol

Vol(K̂)
∈Rn, (2.14)

where x is the position vector of the points in K̂. It is easy to see that∫
K̂

∣∣∣x−cen(K̂)
∣∣∣2 dv̂ol(x)=min

y∈Rn

{∫
K̂
|x−y|2dv̂ol(x)

}
.

Motivated by this, the hyperbolic centroid of a smooth bounded domain K in Hn is defined
by

cen(K)=

∫
K Xdvol(

−⟨
∫

K Xdvol,
∫

K Xdvol⟩
) 1

2
, (2.15)

where X =(
√

1+|x|2,x) is the position vector of the points in K. By this definition, we
know that cen(K)∈Hn since ⟨cen(K),cen(K)⟩=−1 and the 0th component of cen(K) is
positive.

Proposition 2.1. The hyperbolic centroid of a smooth bounded domain K in Hn satisfies∫
K

coshd(cen(K),X)dvol(X)= min
Y∈Hn

{∫
K

coshd(Y,X)dvol(X)

}
. (2.16)

Moreover, for any A∈ Isom(Hn), we have

cen(A(K))=A(cen(K)). (2.17)

Proof. (i) First, we verify the equivalent characterization (2.16) of the hyperbolic centroid.
For any Y∈Hn, we have∫

K
coshd(Y,X)dvol(X)=−

∫
K
⟨Y,X⟩dvol(X)
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=−⟨Y,cen(K)⟩
(
−⟨
∫

K
Xdvol,

∫
K

Xdvol⟩
) 1

2

≥
(
−⟨
∫

K
Xdvol,

∫
K

Xdvol⟩
) 1

2

, (2.18)

where we used −⟨Y,cen(K)⟩= coshd(Y,cen(K))≥1. Equality holds in (2.18) if and only
if Y=cen(K).

(ii) For any A∈Isom(Hn) and any X,Y∈Hn, we have −⟨AX,AY⟩=coshd(AX,AY)=
coshd(X,Y)=−⟨X,Y⟩ and hence

−⟨
∫

K
AXdvol(X),

∫
K

AXdvol(X)⟩

=−
∫

K

∫
K
⟨AX,AY⟩dvol(X)dvol(Y)

=−
∫

K

∫
K
⟨X,Y⟩dvol(X)dvol(Y)

=−⟨
∫

K
Xdvol(X),

∫
K

Xdvol(X)⟩. (2.19)

Therefore, −⟨
∫

K Xdvol(X),
∫

K Xdvol(X)⟩ is invariant under the isometry of Hn. By (2.15)
and (2.19), we have

cen(A(K))=

∫
K AXdvol(

−⟨
∫

K AXdvol,
∫

K AXdvol⟩
) 1

2

=A

 ∫
K Xdvol(

−⟨
∫

K Xdvol,
∫

K Xdvol⟩
) 1

2

=A(cen(K)).

The hyperbolic centroid of K in Hn and the centroid of K̂=π(K) in Rn can be related
as follows.

Proposition 2.2. A smooth bounded domain K in Hn has its hyperbolic centroid at p0 if and
only if K̂=πp0(K)⊂Rn has its centroid at o.

Proof. Up to a hyperbolic translation, one may assume that the hyperbolic centroid of K
is N=(1,0). Then we have X=(

√
1+|x|2,x)=(coshr,sinhrθ) and x= r̂θ, where sinhr= r̂

and θ∈Sn−1. A direct calculation yields

∇Hn
∣∣∣
(1,0)

∫
K

coshrdvol=
∫

K
dπ(sinhr∂r)dvol

=
∫

K
sinhrcoshrθ(sinhr)n−1drdθ

=
∫

K̂
r̂nθdr̂dθ
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=
∫

K̂
xdv̂ol.

By the equivalent characterization (2.16) of the hyperbolic centroid cen(K), we conclude
that o is also the centroid of K̂=π(K) in Rn.

3 Affine isoperimetric inequalities

In this section, we first recall the classical affine isoperimetric inequalities in Euclidean
space. A compact convex subset of Rn with nonempty interior is called a convex body
in Rn. Denote by Kn the set of all convex bodies in Rn. We denote by Kn

o ⊂Kn be the
compact convex bodies in Rn containing the origin o as an interior point.

Let K̂∈Kn. The affine surface area as(K̂) is defined by

as(K̂) :=
∫

∂̂K
Hn−1(κ̂)

1
n+1 dÂ, (3.1)

where Hn−1(κ̂) is the generalized Gauss curvature of the hypersurface ∂̂K⊂Rn. Denote
by SL(n) = {L ∈ Mn×n | det(L) = 1} the special linear group on Rn, which consists of
the unimodular linear transformations of Rn. For any ellipsoid E in Rn, there exists a
centered ball BE with Vol(BE)=Vol(B), L∈SL(n) and b∈Rn such that E= LBE+b. The
affine surface area as(K̂) is SL(n)-invariant and translation-invariant, i.e.,

as(L(K̂)+b)=as(K̂), for all L∈SL(n) and b∈Rn.

Theorem 3.1. Let K̂∈Kn. The classical affine isoperimetric inequality is

as(K̂)≤n|Bn| 2
n+1 Vol(K̂)

n−1
n+1 , (3.2)

which is SL(n)-invariant and translation-invariant. Equality holds if and only if K̂ is an ellipsoid.

For a more restricted class of bodies, this inequality is due to Blaschke [4] for n≤ 3,
see also [5]. Later, Santaló [32] and Deicke [10] extended this inequality for all n ≥ 2.
Theorem 3.1 is due to Petty [29]. For K̂ ∈Kn with its centroid at the origin o, the affine
surface area can be generalized to the Lp-affine surface area, which was first introduced
by Lutwak [27] for p > 1 in his groundbreaking paper, and later generalized by Schütt
and Werner [35] for all p ̸=−n. Precisely, for p ̸=−n, the Lp-affine surface area asp(K̂) of
K̂⊂Rn is defined by

asp(K̂) :=
∫

∂̂K
û− n(p−1)

n+p Hn−1(κ̂)
p

n+p dÂ, (3.3)

while for p=±∞, it is defined by

as±∞(K̂) :=
∫

∂̂K
û−nHn−1(κ̂)dÂ, (3.4)
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provided that the above integrals exist.
The following Lp affine isoperimetric inequalities were proved by Lutwak [27] for

p>1, and later extended by Werner and Ye [39, Thm. 4.2] for general p ̸=−n.

Theorem 3.2. Let K̂∈Kn with its centroid at the origin o.

(i) If p>0, then

asp(K̂)≤n|Bn|
2p

n+p Vol(K̂)
n−p
n+p . (3.5)

(ii) If −n< p<0, then

asp(K̂)≥n|Bn|
2p

n+p Vol(K̂)
n−p
n+p . (3.6)

(iii) If p<−n and K̂ is strictly convex with C2 boundary, then

asp(K̂)≥nc
np

n+p |Bn|
2p

n+p Vol(K̂)
n−p
n+p . (3.7)

where c is a non-sharp constant.

Equality holds in (3.5) or (3.6) if and only if K̂ is an ellipsoid centered at the origin.

Remark 3.1. Inequalities (3.5)-(3.7) are SL(n)-invariant. Moreover, the constant c in (3.7)
is from the inverse Santaló inequality ([6]).

Let K̂ be a smooth convex body in Rn with strictly convex boundary. The affine support
function of K̂ is defined by

Λ(K̂) := ûHn−1(κ̂)
− 1

n+1 ,

where Hn−1(κ̂) denotes the Gauss curvature of ∂̂K. Then Λ(K̂) is SL(n)-invariant. The
affine surface area measure is defined by

dÃ=Hn−1(κ̂)
1

n+1 dÂ,

which is the volume element of the positive definite tensor g̃ij=Hn−1(κ̂)
− 1

n+1 hij. Then dÃ
is SL(n)-invariant and translation-invariant.

For p ̸=−n, it follows from the definition (3.3) that

asp(K̂)=
∫

∂̂K

(
û

Hn−1(κ̂)
1

n+1

) (1−p)n
n+p

Hn−1(κ̂)
1

n+1 dÂ=
∫

∂̂K
Λ

(1−p)n
n+p dÃ.

In particular, as0(K̂)= 1
n Vol(K̂) and as1(K̂)= as(K̂) are SL(n)-invariant and translation-

invariant; for other choice of p ̸=−n, asp(K̂) is only SL(n)-invariant.
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The affine transformation in Rn is given by

ϕ̂L,b :Rn →Rn, x 7→Lx+b,

where L∈SL(n) and b∈Rn. Motivated by this, we define the hyperbolic affine transformation
on Hn by

ϕL,b :Hn →Hn,
(√

1+|x|2,x
)
7→
(√

1+|Lx+b|2,Lx+b
)

.

In particular, we have ϕL,b(K)=π−1
p0

(
L(πp0(K))+b

)
, where p0∈Hn is a fixed point. Then

the hyperbolic special affine group is defined by

SA(Hn) :={ϕL,b | L∈SL(n),b∈Rn},

while the hyperbolic special linear group is defined by

SL(Hn) :={ϕL,0 | L∈SL(n)}.

Let K be a smooth bounded domain in Hn, which is static convex with respect to its
hyperbolic centroid p0. Then K̂ :=πp0(K) is a convex body with its centroid at the origin
o. The hyperbolic affine support function ΛH of K⊂Hn is defined by

ΛH(K) :=uHn−1(κ̃)
− 1

n+1 . (3.8)

It follows from (2.6) and (2.13) that

ΛH(K)=Λ(K̂), (3.9)

and hence it is SA(Hn)-invariant. The hyperbolic Lp-affine surface area of K⊂Hn is defined
by

asH
p (K) :=

∫
∂K

u
(1−p)n

n+p Hn−1(κ̃)
p

n+p dA, ∀ p ̸=−n, (3.10)

and

asH
±∞(K) :=

∫
∂K

u−nHn−1(κ̃)dA, (3.11)

where κ̃i =Vκi−V,ν. Using dÃ=Hn−1(κ̂)
1

n+1 dÂ=Hn−1(κ̃)
1

n+1 dA, we get

asH
p (K)=

∫
∂K
(ΛH)

(1−p)n
n+p dÃ=asp(K̂), ∀p ̸=−n, (3.12)

and

asH
±∞(K)=

∫
∂K
(ΛH)−ndÃ=as±∞(K̂).
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Hence, asp(K) for all p ̸=−n and asH
±∞(K) are SL(Hn)-invariant.

For any subset K̂∈Rn, the polar body of K̂ in Rn with respect to the origin o is defined
by

K̂◦ :={y∈Rn | y·x≤1,∀x∈ K̂}.

The polar body K̂◦ is an intersection of closed half-spaces that contain the origin, and
thus it is a closed convex set that contains the origin. It follows from the definition that

(i) For any subsets K̂0,K̂1 in Rn such that K̂0⊂ K̂1, then K̂◦
0 ⊃ K̂◦

1 .

(ii) For any subset K̂ in Rn, K̂⊂ K̂◦◦.

Moreover, if K̂ is a convex body in Rn which contains the origin in its interior, then K̂◦

is also a convex body that contains the origin in its interior, and K̂ = K̂◦◦, see [34, Thm.
1.6.1].

Another important affine isoperimetric inequality is the Blaschke-Santaló inequality.

Theorem 3.3 ([4, 32]). Let K̂ ∈Kn with its centroid at the origin o. The Blaschke-Santaló in-
equality states that

Vol(K̂)Vol(K̂◦)≤|Bn|2, (3.13)

which is SL(n)-invariant. Equality holds if and only if K̂ is a centered ellipsoid.

In order to prove the Blaschke-Santaló type inequality in hyperbolic space, we first
show that the following property of the hyperbolic polar body.

Proposition 3.1. A smooth bounded domain K in Hn and p0 is an interior point of K. Let K◦ be
the hyperbolic polar body of K with respect to p0 which is defined by (1.11). Then

K◦=π−1
p0
((πp0(K))

◦).

Moreover, if K is static convex with respect to its hyperbolic centroid p0, then K◦ is also static
convex with respect to its hyperbolic centroid p0.

Proof. By a hyperbolic translation, one may assume that p0 = (1,0)∈Hn. For any X =
(
√

1+|x|2,x), Y=(
√

1+|y|2,y) in Hn, one has

coshd(X,Y)=−⟨X,Y⟩=−x ·y+
√

1+|x|2
√

1+|y|2.

A direct calculation yields√
1+|x|2

√
1+|y|2=coshd(X,p0)coshd(Y,p0).



Hu Y, Li H, Wan Y and Xu B / J. Math. Study, 58 (2025), pp. 62-81 77

Hence, x ·y≤1 is equivalent to

coshd(X,p0)coshd(Y,p0)≤coshd(X,Y)+1.

Observe that π :Hn →Rn is a diffeomorphism, so we get

(π(K))◦={x∈Rn | x ·y≤1,∀y∈ K̂}
=
⋂

y∈K̂

{x∈Rn | x ·y≤1}

=
⋂

Y∈K

π({X∈Hn | coshd(X,p0)cosd(Y,p0)≤coshd(X,Y)+1})

=π

( ⋂
Y∈K

{X∈Hn | coshd(X,p0)cosd(Y,p0)≤coshd(X,Y)+1}
)

=π(K◦).

If p0 = (1,0) is the hyperbolic centroid of K, then π(K) is a compact convex body in
Rn with its centroid at o by Proposition 2.2. Thus, (π(K))◦ is also a compact convex
body in Rn with its centroid at o. Using Proposition 2.2 again, we conclude that K◦ =
π−1((π(K))◦) is a smooth bounded domain which is static convex with respect to its
hyperbolic centroid p0.

The radial function and support function of K̂ ∈Kn
0 with respect to the origin o are

defined by

r̂(K̂,θ) :=max{t∈R | tθ∈ K̂}, θ∈Sn−1,

ĥ(K̂,z) :=max{x ·z | x∈ K̂}, z∈Sn−1.

In view of the polar duality, we have

r(K̂◦,θ)=
1

ĥ(K̂,θ)
, h(K̂◦,z)=

1
r̂(K̂,z)

, for all θ,z∈Sn−1. (3.14)

In particular,
h(K̂,z)= û(x), for Hn−1-almost every x∈ ∂̂K,

where z is the unit outward normal at x∈ ∂̂K. In view of the polar duality (3.14), we have

r̂(K̂◦,θ)=
1

ĥ(K̂,θ)
=

1
û(ν̂−1

K̂
(θ))

, û(ν̂−1
K̂◦ (z))= ĥ(K̂◦,z)=

1
r̂(K̂,z)

.

It is clear that for any two subsets K1, K2 in Hn such that K1 ⊂ K2, we have K◦
1 ⊃ K◦

2 ;
Moreover, for any subset K in Hn, K⊂K◦◦.
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Proposition 3.2. If a smooth bounded domain K in Hn is static convex with respect to an interior
point p0, then K◦ is also static convex with respect to p0, and K=K◦◦.

(i) The radial function of the hyperbolic polar body satisfies

coshr◦=
coshr

u
, (3.15)

(ii) The hyperbolic special linear transformations and the hyperbolic polar bodies satisfy

(ϕL,0(K))◦=ϕL−t,0(K
◦), (3.16)

where L−t =(L−1)t denotes the transpose of the inverse of L∈SL(n).

(iii) The hyperbolic affine support functions of K and K◦ satisfy

ΛH(K,z)ΛH(K◦,θ)=1, (3.17)

where z=ν−1
K̂

(x) and θ= x
|x| for x∈ ∂̂K.

Proof. Taking K̂ = πp0(K), then the static convexity of K with respect to p0 is equiva-
lent to the convexity of K̂ by Corollary 2.1. Then by Proposition 3.1, we conclude that
K◦=π−1

p0
((πp0(K))

◦) is static convex with respect to p0. Moreover, K=K◦◦ follows imme-
diately from K̂= K̂◦◦.

In view of (2.3) and (2.6), (3.15) follows directly from

coshr
u

=
(1+ r̂2)

1
2

û

(
1+û2

1+ r̂2

) 1
2

=
(
1+(r̂◦)2) 1

2 =coshr◦.

Then (3.16) follows from L(K̂◦)=L−t(K̂◦) for all L∈SL(n). Finally, (3.17) follows from

Λ(K̂,z)Λ(K̂◦,θ)=1,

where K̂ and K̂◦ are convex bodies in Rn with o as an interior point which are the polar
dual of each other, where z=ν−1

K̂
(x) and θ= x

|x| for x∈ ∂̂K, see [21].

Proposition 3.3. If a smooth bounded domain K in Hn is strictly static convex with respect to
its interior point p0, and p ̸=−n, then

asH
p (K)=asH

n2
p
(K◦). (3.18)

Proof. It follows from [21, Thm. 3.2] for p>0 and [39, Cor. 3.1] for general p ̸=−n that

asp(K̂)=as n2
p
(K̂◦).

Combining this with (3.12), we obtain (3.18).
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4 Proofs of Theorems 1.3-1.5

Proof of Theorem 1.3. It follows from (3.12) that∫
∂K

Hn−1(κ̃)
1

n+1 dA=asH
1 (K)=as1(K̂),

where K̂ = πp0(K). Using Theorem 3.1 and Vol(K̂) =
∫

K Vdvol, we obtain the desired
inequality (1.7). Equality holds if and only if K̂ is an ellipsoid, and hence K is a hyperbolic
ellipsoid in Hn.

Proof of Theorem 1.4. Assume that K in Hn is static convex with respect to its hyperbolic
centroid p0. Then K̂=πp0(K) is a convex body with its centroid o in Rn by Corollary 2.1
and Proposition 2.2. On the other hand, we have∫

∂K
u

(1−p)n
n+p Hn−1(κ̃)

p
n+p dA=asH

p (K)=asp(K̂).

Using Theorem 3.2 and Vol(K̂)=
∫

K Vdvol, we obtain the desired inequalities (1.8)-(1.10).
Equality holds in (1.8) or (1.9) if and only if K̂ is an centered ellipsoid in Rn, which is
equivalent to K is a hyperbolic ellipsoid with its hyperbolic centroid p0.

Proof of Theorem 1.5. It follows from Proposition 2.2 that if K has its hyperbolic centroid at
p0, then K̂ :=πp0(K) is a convex body with centroid at the origin. Let K̂◦⊂Rn be the polar
body of K̂ with respect to the origin. By Proposition 3.1, we have πp0(K

◦)= K̂◦. Thus, by
(2.10) we get

Vol(K̂)=
∫

K
Vdvol, Vol(K̂◦)=

∫
K◦

Vdvol.

Using the Blaschke-Santaló inequality (3.13), we obtain the desired inequality∫
K

Vdvol·
∫

K◦
Vdvol≤|Bn|2.

The equality case in the Blaschke-Santaló inequality implies that K̂ is an ellipsoid with its
centroid o in Rn. Therefore, K is a hyperbolic ellipsoid in Hn with its hyperbolic centroid
at p0.
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[4] Blaschke W. Über affine geometrie I: isoperimetrische eigenschaften von ellipse and el-
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