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Abstract. In this paper, the notion of hyperbolic ellipsoids in hyperbolic space is in-
troduced. Using a natural orthogonal projection from hyperbolic space to Euclidean
space, we establish affine isoperimetric type inequalities for static convex domains in
hyperbolic space. Moreover, equality of such inequalities is characterized by these
hyperbolic ellipsoids.
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1 Introduction

The classical Minkowski’s second inequality [34, Thm. 7.2.1] states that if KCIR" is a con-
vex body (that is, a compact, convex set with non-empty interior) with smooth boundary
dK and H is the mean curvature of 0K, then

n
n—1
with equality if and only if K is a ball. This inequality was later generalized by Reilly [31]
to compact Riemannian manifolds with nonnegative Ricci curvature and convex bound-
ary. Using the generalized Reilly’s formula [30], Xia [40] proved the following Minkowski
type inequalities in hyperbolic space.

Area(9K)2> " Vol(K) /a HA, (1.1)
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Theorem 1.1 ([40]). Let K be a smooth bounded domain in H". Let V (x)=coshr, where r(x)=
d(x,po) is the geodesic distance to a fixed point po € H". Assume that the second fundamental
form of 0K satisfies

Vy
Then there holds
) 2
< / VdA) > / Vivol- [ VHAA, (1.3)
aK n—1Jk 9K

where dvol is the volume element of H". Equality holds if and only if K is a geodesic ball.

The condition (1.2) is called static convexity, which was introduced by Brendle and
Wang [9] for its correspondence in static space-time. In particular, when K is a smooth
bounded domain in IR”, then the weight function V=1 and the static convexity (1.2) turns
out to be the usual convexity (i.e. h;;>0), while the inequality (1.3) reduces to the classical
Minkowski’s second inequality (1.1). Moreover, it was proved in [40] that the equality in
(1.3) is attained for all geodesic balls, not necessarily the geodesic balls centered at py.

Another family of sharp geometric inequalities for static convex domains in hyper-
bolic space was obtained by using locally constrained inverse curvature flows [16].

Theorem 1.2 ([16]). Let K be a smooth bounded domain in IH". Assume that oK is static convex
and starshaped with respect to an interior point pg in K. For each k=0,1,...,n, there holds

k+1

(\Bn|i+</KVdvol>"> , (1.4)

where Hy. is the normalized k-th mean curvature of the hypersurface oK. Equality holds in (1.4) if
and only if K is a geodesic ball centered at po.

n—=1—k

VHdA> n < / Vdvol)
oK K

For k=0, the inequality (1.4) can be considered as a weighted isoperimetric inequality.
It was first proved by Scheuer and Xia [33], and recently it was generalized to bounded
domains with C! boundary by Li and Xu [24]. For k=1, the inequality (1.4) also holds
for starshaped domains with mean convex boundary, see [33]. Moreover, the inequality
(1.4) with k=1 also holds for merely static convex domains, i.e., pg is not necessarily an
interior point of K, see [9, Thm. 4, case 4]. Using the well-known Minkowski’s identity

n / Vdvol= / V,dA,
K oK

the inequality (1.4) with k=1 can be rewritten as

n—-2

/aKH1(;z)dAzn|]B"|% </KVdvol> " (1.5)
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where &;=V«;—V, and H; (k) =V H; —V,. This inequality (1.5) can be compared with the
volumetric Minkowski inequality in Euclidean space, which holds for smooth bounded
domain with mean convex boundary, see [1, Thm. 1.5]. As a natural analog of volume
functional in Euclidean space, the weighted volume [, Vdvol appears in the geometric in-
equalities in hyperbolic space such as (1.3) and (1.4), as well as the Heintze-Karcher type
inequalities in Riemannian manifolds [7] (see also [26,30]). On the other hand, different
from the translation invariance of the Euclidean volume, the weighted volume depends
on the choice of the origin py. Therefore, it is natural to classify the sharp geometric in-
equalities in hyperbolic space into the following two families. One family consists of the
translation-invariant geometric inequalities, that is, the equality is attained by geodesic
spheres, see, e.g., [2,3,13,17-19,23,36]; The other one family of geometric inequalities de-
pends on the choice of the origin py, and in this case the equality is attained by geodesic
balls centred at po, see [8,11,14,16,19,20,22,25,30,40].

On the other hand, affine isoperimetric inequalities relating two functionals associ-
ated with convex bodies such that the ratio of these functionals is invariant under the
non-degenerate linear transformations. These inequalities are of great importance in both
convex geometry and affine differential geometry, and they are more powerful than their
Euclidean relatives. Moreover, due to the affine invariance, equality case of these inequal-
ities is attained at ellipsoids.

The main purpose of this paper is to present affine isoperimetric type inequalities in
hyperbolic space. First of all, we need to introduce the notion of hyperbolic ellipsoid as
the natural counterpart of ellipsoid in Euclidean space. A smooth bounded domain K in
H" is called a hyperbolic ellipsoid if there exists a point po € JH" such that the image 775, (K)
is an ellipsoid in R", where 71, :H" —IR" is an orthogonal projection with respect to po
given by (2.2). The hyperbolic centroid of a smooth bounded domain K in IH" is the unique
point defined by

[ Xdvol
(—( [y Xdvol, [, Xdvol))

cen(K) =

, (1.6)

Nf—=

see Proposition 2.1.

The first result of this paper is the following geometric inequality in hyperbolic space,
which can be considered as a natural counterpart of the classical affine isoperimetric in-
equality in Euclidean space.

Theorem 1.3. Let K be a smooth bounded domain in H". Assume that the boundary oK is static
convex with respect to a point pg in IH". Then there holds

n—1
n+1

/Hn_l(ﬁ)nlﬂdAgnUB”]nzﬂ(/Vdvol> , (1.7)
oK K

where H,—1 (%) =TT/} (Vx;— V). Equality holds if and only if K is a hyperbolic ellipsoid.
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Our second result is the following.

Theorem 1.4. Let K be a smooth bounded domain in IH" and py is its hyperbolic centroid. As-
sume that the boundary 0K is static convex with respect to this point po. Then the following
inequalities hold:

(i) If p>0, then

(1=p)n NP 2 ntp
/a (Va) 5 Hyy ()7 dA < n B /K vdvol )" (1.8)
(ii) If —n <p <O, then
o . =
[ (V) ™ Hya(R) 77 dA = n B[ /K vadvol ). (1.9)
(iii) If p < —n and dK is strictly static convex with respect to po, then
(=p)n P np_ 2p %
/ (V,V) ntp anl(k) *rdA>ncntr |]Bn’”ﬂ’ (/ VdVOl) , (1.10)
oK K

where ¢ >0 is a non-sharp constant.
Equality holds in (1.8) or (1.9) if and only if K is a hyperbolic ellipsoid.

We should mention that the left-hand sides of these inequalities (1.7)—(1.10) are nat-
ural analogs of the affine surface area and L, affine surface area in Euclidean space, see
(3.9) and (3.12) in §3.

We also obtain the following Blaschke-Santalé type inequality in hyperbolic space,
which can be considered as a natural analog of Blaschke-Santal6 inequality in Euclidean
space. To state our result, for any subset K in IH", the hyperbolic polar body K° of K with
respect to py is defined by

K®:= (" {XeH" | coshd(X,po)coshd(Y,po) <coshd(X,Y)+1}. (1.11)
YekK

Different from the (usual) polar body of a strictly convex body in hyperbolic space which
lies in the de Sitter space, if the smooth bounded domain K is static convex with respect to
po, then its hyperbolic polar body K° is also static convex with respect to pg, see Corollary
2.1.

The following weighted volume product inequality in hyperbolic space can be com-
pared with the volume product inequality in space forms [12] (see also a different exten-
sion by Hu and Li [18]).
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Theorem 1.5. Let K be a bounded domain in IH" with smooth boundary oK. Assume that 0K is
static convex with respect to its hyperbolic centroid po. Let K° be the hyperbolic polar body of K
with respect to po. Then there holds

/ Vdvol. / Vdvol < |B"[2. (1.12)
K Ke°

Equality holds if and only if K is a hyperbolic ellipsoid centred at py.

Our results can be also established for static convex domains in the unit sphere, while
in this case, V(x) =cosr(x) and r(x) =d(x,po) is the geodesic distance from x to p in the
sphere.

The paper is organized as follows. In Section 2, we use the hyperboloid model to
define the orthogonal projection from hyperbolic space to Euclidean space. Using this or-
thogonal projection, we explore the relations between hypersurfaces in hyperbolic space
and its orthogonal projection in Euclidean space. Moreover, the hyperbolic centroid of
a smooth bounded domain in hyperbolic space are defined. In Section 3, we review the
classical affine isoperimetric inequalities in Euclidean space. In order to establish their
hyperbolic analogs, we introduce the hyperbolic affine transformations, hyperbolic L,-
affine surface area, hyperbolic affine support function and hyperbolic polar bodies. In
Section 4, we give the proofs of Theorems 1.3-1.5.

2 Preliminaries

2.1 Hyperboloid model of hyperbolic space

The Minkowski space R™! is the (n+1)-dimensional vector space R"*! equipped with
the Minkowski inner product

(X,Y) = ((x0,%), (¥0.1)) = —Xoyo + ixiyi,

where x=(x1,...,%,), Y= (y1,...,yn) €ER". The hyperboloid model of the hyperbolic space
H" is the upper sheet of the hyperboloid in the Minkowski space R™!, that is,

H" = {X = (xq,x) €ER™ | (X,X)=—1, xo>0}.

For any point X = (xo,x) € H", it follows from the relation —1= (X,X) = —x3+|x|*> and

x>0 that X = (1/1+|x|%x).

Let N=(1,0) e H". The orthogonal projection with respect to N is defined by
m:H" - R",

(y/1+]x]%,x)—x, (2.1)
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Figure 1: Orthogonal projection 7w

see Fig. 1. In general, for any point pg = (xo,x) € H", there exists a unique hyperbolic
translation Ty, € Isom(IH") which sends pg to N = (1,0). Then the orthogonal projection
with respect to this point py is given by

TCpy = 700 Ty (2.2)

For any bounded domain K with smooth boundary dK in IH", the orthogonal projec-
tion K= 7, (K) with respect to a point po € H" is a smooth bounded domain in R". This
projection was first proposed by Gibbons [15] to prove the Penrose inequality for general
surfaces in the Minkowski spacetime. It is also called by Gibbons’ projection, which can
be used to define the quasi-local mass in general relativity [37,38]. Brendle and Wang [9]
also employed this projection to establish a Penrose type inequality for 2-surfaces in a
static convex timelike hypersurface in a static spacetime, see also [28]. In particular, the
static convexity of K in this static spacetime implies the convexity of its projection Kin
R", see [9, P. 36]. In the case of hyperbolic space, we show that the static convexity of 0K
with respect to py is equivalent to the convexity of oK := 7, (0K) in Euclidean space, see
Corollary 2.1.

Using the geodesic polar coordinates with respect to N = (1,0), the hyperbolic space

H" can be expressed as
X=(y/1+|x|?,x) = (coshr,sinhrf),

where 6 € 5”71, r is the geodesic distance to N in H”. Denote by 7= |x| the Euclidean
distance of x to the origin 0 = (0,...,0) in R". It is clear that the hyperbolic radius r and
the Euclidean radius 7 are related by

7=sinhr. (2.3)

Let {01,...,0,—1} be an orthonormal basis of the tangent space Txa/I\<, and let ¥ be the
unit outward normal of dK at the point x € 0K, respectively. The induced metric and the
support function of 0K in IR" are given by

g\ij:aix-aszéij, u=x-v,
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where - denotes the inner product of R”. Then the second fundamental form ﬁi]- and the

Weingarten matrix Ez can be expressed by

o~ ~ ~7 /\‘k/\
hl‘]' = —aia]'x-ll, hi :g] hki-

Lemma 2.1. Let 9K be a smooth hypersurface in H". Let oK := 7t(9K) be the orthogonal projec-

tion of 0K with respect to N =(1,0) in R".
(i) The induced metric g;; satisfies

(x-0;x)(x-0jx)

8ij = 0ij— 1+ [x]2

(ii) The unit outward normal v satisfies

(v/1+|x|?u,ux+7)

V= 1
(122}

(iii) The support function u satisfies

1
. 1+]|x|? zﬁ
o\ 142 '

(iv) The second fundamental form h= (h;;) satisfies

1

i(x-0;x)(x-9x)

l’li]' = |:/ﬁi]‘ +1/4\(5,']' —

(1+a2) 1+ |x|?

N|—

(v) The Weingarten matrix YV = (h{) = (hyg") satisfies

K

P ﬁ§+ﬁ5{ ﬁf-‘(xoakx) (x-0jx)

(1+12)2 (142)2
Proof. (i) (2.4) follows from

(x-0;x)(x-0;jx)
1+ |x[2

4

gi]' :<81X,8]X> :(51] —

X-0;X 'x)
/71+|x|2 g’} .
(i) (2.5) was proved in [24, Lem. 2.2].

where we used 9; X = (

(2.5)

(2.8)
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(iii) As X= (/14 |x|?,x) = (coshr,sinhrf), we have

sinhrd, X =sinhr (sinhr,coshrf) = <|x]2, \/ 1+ ]x|2x> . (2.9)

By (2.9) and (2.5), we obtain

u= (sinhrd, X,v)

L2 2y (v/ 14 |x|?u,v+1ix)
<<| /1 e, SRR >

1+u?
hij:—<8ian,v>

I —— \/1+ 21,0+ iix)
——<(8i8j 1+|x|288x | % >
hji (9,9 VA
J xx) | 1 1+|x 99,/ 1+|x ]2

T (1+a)t (1+ﬁ2)% (1+i2)2
1 ~ x-0;x)(x-0;x
=— [hij+u(5ij— ( )( 5 ! )]
(1+2)2 1+ |x|

(iv) (2.7) follows from

(v) Using ¢'* Skj = 5;, it is easy to deduce that

.. .. (x-aix)(x‘ajx)

ij __ gij o N7 TP T

g =0mt 1+w2

Then we have

H—H?(S{ +iz\i-‘(x-akx)(x-8jx)

(1+i2)2 (1+112)2 0

h{:gfkhki:

Using Lemma 2.1, we have

Lemma 2.2. Let dvol (resp. dvol) and dA ( resp. dA) be the volume element and surface area
element of KCH" (resp. K=m(K) CR").

(i) The volume elements of K and K satisfy

Vdvol = dvol. (2.10)
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(ii) The surface area elements of K and K satisfy

1
1+ \?  ~
dA=| ——— | dA. 2.11

<1+\x|2> @11)

(iii) The second fundamental forms of 0K and oK satisfy

1
T+]x2\ 2~
th’j_v,vgij:( 1+’ﬁ|2 > hij. (2.12)

(iv) The Gauss curvatures of 0K and oK satisfy

2\ 2
Hn—l(ﬁ): (1+|f| ) Hp (k\)/ (2.13)

where ®; = Vx;—V,, and «; (resp. ;) are the principal curvatures of 0K C H" (resp.
JdKCR").

Proof. Formulas (2.10) and (2.11) have been proved in [24, Lem. 2.1 & 2.3]. To deduce
(2.12), it follows from (2.4), (2.6) and (2.7) that

VI1+|x|?
Vhij=V8ij=\/ 1+ x| — A+t o

1
T+|x|>) 2~
=ira ) M

x'[? _1+[af

Finally, by using (2.4), we have

det(8i) =1~ T = T4 a2
Then (2.13) follows from
5 det(Vhij_V,vgij)
Hua ()= det(gij)
_ 1+ |x|2 T det(ﬁi]-)
o\ 142 det(gi;)

n+l

1+ x2 2 .
:< 1+‘ﬁ’2> Hy 1(%).
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Corollary 2.1. A smooth bounded domain K in H" is (resp. strictly) static convex with respect
to po if and only if its orthogonal projection K= 7t (K) in R" is (resp. strictly) convex.

Proof. For any po# N, we use the hyperbolic translation Ty, such that Ty, (po) = N. Then
by 711, = o Ty, due to (2.2), we have T, (K) is static convex with respect to Tp,(po) = N.
Moreover, it follows from (2.12) that Ty, (K) is static convex with respect to Ty, (po) =N if

and only if K= Ty (K) = 0 Ty, (K) is convex in R™. O
2.2 Hyperbolic centroid

Recall that the centroid of a smooth bounded domain K in R" is defined by

. [exdvol
cen(R) = JEENVOl (2.14)
Vol(K)

where x is the position vector of the points in K. Tt is easy to see that

yER"

2~ ~ —~
/A ‘x —cen(K) ‘ dvol(x) =min {/A |x—y/[*dvol(x) } .
R K
Motivated by this, the hyperbolic centroid of a smooth bounded domain K in IH" is defined
by
J g Xdvol
(= ([ Xdvol, [, Xdvol))?

cen(K)= , (2.15)

where X = (1/14|x|?,x) is the position vector of the points in K. By this definition, we
know that cen(K) € H" since (cen(K),cen(K))=—1 and the Oth component of cen(K) is
positive.

Proposition 2.1. The hyperbolic centroid of a smooth bounded domain K in H" satisfies

/ coshd(cen(K),X)dvol(X)= min {/ coshd(Y,X)dvol(X)}. (2.16)
K YeH" K
Moreover, for any A € Isom(IH"), we have

cen(A(K))=A(cen(K)). (2.17)

Proof. (i) First, we verify the equivalent characterization (2.16) of the hyperbolic centroid.
For any Y € H", we have

/ coshd(Y,X)dvol(X) = — / (Y, X)dvol(X)
K K



72 Hu Y, Li H, Wan Y and Xu B / J. Math. Study, 58 (2025), pp. 62-81

=—(Y,cen(K)) <—</KXdV01,/KXdV01>>;

> (_< | xavol, | de01>) (2.18)

where we used —(Y,cen(K)) =coshd(Y,cen(K)) > 1. Equality holds in (2.18) if and only
if Y =cen(K).

(ii) For any A €Isom(IH") and any X,Y € H", we have —(AX,AY) =coshd(AX,AY) =
coshd(X,Y)=—(X,Y) and hence

— /K AXdvol(X), /K AXdvol(X))
__ / / (AX, AY)dvol(X)dvol(Y)
KJK
—_ / / (X,Y)dvol(X)dvol(Y)
KJK
— /K Xdvol(X), /K Xdvol(X)). (2.19)

Therefore, —( [, Xdvol(X), [, Xdvol(X)) is invariant under the isometry of H". By (2.15)
and (2.19), we have

fKAdeol
(—( [ AXdvol, [ AXdvol))

—A ( JxXdvol ) — A(cen(K)).
(—( [ Xdvol, [ Xdvol))?

cen(A(K))=

NI

O

The hyperbolic centroid of K in H" and the centroid of K= 77(K) in IR” can be related
as follows.

Proposition 2.2. A smooth bounded domain K in H" has its hyperbolic centroid at py if and
only if K= 71, (K) CIR" has its centroid at o.

Proof. Up to a hyperbolic translation, one may assume that the hyperbolic centroid of K
is N=(1,0). Then we have X=(1/14|x|?,x) = (coshr,sinhrf) and x =76, where sinhr=7
and 6 €5"~1. A direct calculation yields

v / coshrdvol = / d7(sinhrd, )dvol
(1,0) JK K
:/sinhrcoshr@(sinhr)”_ldrd(?
K

_ /A 10470
K
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= [ xavol.
K
By the equivalent characterization (2.16) of the hyperbolic centroid cen(K), we conclude
that o is also the centroid of K= 77(K) in R". O

3 Affine isoperimetric inequalities

In this section, we first recall the classical affine isoperimetric inequalities in Euclidean
space. A compact convex subset of R” with nonempty interior is called a convex body
in R". Denote by K" the set of all convex bodies in IR”. We denote by K} C K" be the
compact convex bodies in R"” containing the origin o as an interior point.

Let K € K". The affine surface area as(K) is defined by

as(R):= /&Hn,l(a)ﬁdﬁ, (3.1)

where H,,_1 (%) is the generalized Gauss curvature of the hypersurface 9K C R". Denote
by SL(n) = {L € Myxn | det(L) =1} the special linear group on R”, which consists of
the unimodular linear transformations of R”. For any ellipsoid E in R", there exists a
centered ball B with Vol(Bg) =Vol(B), L €SL(n) and b € R" such that E=LBg+b. The

-~

affine surface area as(K) is SL(n)-invariant and translation-invariant, i.e.,
as(L(K)+b)=as(K), forall LeSL(n)and beR".

Theorem 3.1. Let K€ K". The classical affine isoperimetric inequality is

as(K) < n|B"|#1 Vol (K) 1, (32)
which is SL(n)-invariant and translation-invariant. Equality holds if and only if K is an ellipsoid.

For a more restricted class of bodies, this inequality is due to Blaschke [4] for n <3,
see also [5]. Later, Santal6 [32] and Deicke [10] extended this inequality for all n > 2.
Theorem 3.1 is due to Petty [29]. For K € K" with its centroid at the origin o, the affine
surface area can be generalized to the L,-affine surface area, which was first introduced
by Lutwak [27] for p >1 in his groundbreaking paper, and later generalized by Schiitt
and Werner [35] for all p # —n. Precisely, for p # —n, the L,-affine surface area asp(I?) of

KCR" is defined by

—~

~ __np=1) P~
as, (K) = /a 0 Hy ()T dA, (3.3)

while for p=+oo, it is defined by

a5 4o (R) := /aAKﬁ‘”Hn,l(f)dﬁ, (3.4)
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provided that the above integrals exist.
The following L, affine isoperimetric inequalities were proved by Lutwak [27] for
p>1, and later extended by Werner and Ye [39, Thm. 4.2] for general p # —n.

Theorem 3.2. Let K € K" with its centroid at the origin o.
(i) If p>0, then

as,(K) <n|B"| w5 Vol (R) 777 (3.5)
(ii) If —n<p <0, then
as, (K) > n|B"|#7 Vol (R) 7. (3.6)
(iii) If p < —n and K is strictly convex with C2 boundary, then
as,(K) > ncs [B"| 77 Vol (R) 7. (3.7)
where c is a non-sharp constant.

Equality holds in (3.5) or (3.6) if and only if K is an ellipsoid centered at the origin.

Remark 3.1. Inequalities (3.5)-(3.7) are SL(n)-invariant. Moreover, the constant c in (3.7)
is from the inverse Santal6 inequality ([6]).

Let K be a smooth convex body in R" with strictly convex boundary. The affine support
function of K is defined by

A(R):=1H,_1 (%) "1,
where H,_1 (%) denotes the Gauss curvature of dK. Then A(K) is SL(n)-invariant. The
affine surface area measure is defined by

dA=H, (R)™1dA,

which is the volume element of the positive definite tensor §;;=H, 1 (k)™ 1 hij. Then dA
is SL(n)-invariant and translation-invariant.
For p # —n, it follows from the definition (3.3) that

(1—p)n
(-p)n

~ n+p
— H,_1(®)71dA= | A" dA.
Hn 1( )n+1 aK

In particular, asy(K) = %Vol([?) and as; (K) = as(K) are SL(n)-invariant and translation-
invariant; for other choice of p # —n, as, (K) is only SL(n)-invariant.

aSp(K) = /A

oK
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The affine transformation in R" is given by
¢rp:R" = R", x+— Lx+b,

where LeSL(n) and beR". Motivated by this, we define the hyperbolic affine transformation

on H" by
Lp:H"—H", 1+ |x|2,x | — 1+|Lx+0b|2,Lx+0b ).
¢r,

In particular, we have ¢ ,(K) =7, ' (L(7p,(K))+Db), where po € H" is a fixed point. Then
the hyperbolic special affine group is defined by

SA(H"):={¢r, | LeSL(n),beR"},
while the hyperbolic special linear group is defined by
SL(H"):={¢r0| LeSL(n)}.

Let K be a smooth bounded domain in H", which is static convex with respect to its
hyperbolic centroid po. Then K:= 7, (K) is a convex body with its centroid at the origin
0. The hyperbolic affine support function A™ of K CH" is defined by

1

AY(K):=uH,_; (%), (3.8)
It follows from (2.6) and (2.13) that
AR (K)=A(K), (3.9)

and hence it is SA(IH")-invariant. The hyperbolic Ly-affine surface area of K CIH" is defined
by

p

(1-p)n
H(K):/aKu A Hy 1 (R)P7dA, Y p#—n, (3.10)

and
as]li{oo(l()::/a u"H,_1(R)dA, (3.11)
K

where & =Vx;—V,. Using dA=H, (%) TTdA = H,_1(%) %HdA, we get

(1-

asH (K) = / (AN T dA=as,(R),  Vp#£-n, (3.12)
P aK

and

astl (K) = /a (AM)TdA=as.o(K).
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Hence, asp(K) for all p# —n and asl (K) are SL(H")-invariant.
For any subset KeR”, the polar body of K in R" with respect to the origin o is defined
by

K°:={yeR" |y-x<1,VxeK}.

The polar body K° is an intersection of closed half-spaces that contain the origin, and
thus it is a closed convex set that contains the origin. It follows from the definition that

(i) For any subsets 120,121 in R” such that 120 C 121, then 128 D sz .
(ii) For any subset KinR", Kc K°°.

Moreover, if K is a convex body in R" which contains the origin in its interior, then Ke°
is also a convex body that contains the origin in its interior, and K=K°°, see [34, Thm.
1.6.1].

Another important affine isoperimetric inequality is the Blaschke-Santal6 inequality.

Theorem 3.3 ([4,32]). Let K € K" with its centroid at the origin 0. The Blaschke-Santalé in-
equality states that

Vol(K)Vol(K°) < |B"|?, (3.13)
which is SL(n)-invariant. Equality holds if and only if K is a centered ellipsoid.

In order to prove the Blaschke-Santal6 type inequality in hyperbolic space, we first
show that the following property of the hyperbolic polar body.

Proposition 3.1. A smooth bounded domain K in IH" and py is an interior point of K. Let K° be
the hyperbolic polar body of K with respect to po which is defined by (1.11). Then

K =71 (723, (K))°).

Moreover, if K is static convex with respect to its hyperbolic centroid po, then K° is also static
convex with respect to its hyperbolic centroid po.

Proof. By a hyperbolic translation, one may assume that po = (1,0) e H". For any X =

(V1+]x[%x), Y=(/1+]|y|?y) in H", one has

coshd(X,Y)=—(X,Y)=—x-y+ \/1+|x‘2\/1+’y|2-

A direct calculation yields

\/1—|— \XP\/H— ly|> =coshd (X, po)coshd(Y,po).
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Hence, x-y <1 is equivalent to
coshd(X,po)coshd(Y,py) <coshd(X,Y)+1.
Observe that 77:IH"” —R" is a diffeomorphism, so we get

(m(K))°={xeR" | x-y<1,¥y €K}
= {xeR" | x-y<1}

yek
= () m({XeH" | coshd(X,po)cosd(Y,pg) <coshd(X,Y)+1})
YeK
:n( () {XeH" | coshd(X,po)cosd(Y,po) §coshd(X,Y)—i—1})
YekK
=7(K?).

If po=(1,0) is the hyperbolic centroid of K, then 71(K) is a compact convex body in
R" with its centroid at o by Proposition 2.2. Thus, (71(K))° is also a compact convex
body in R" with its centroid at 0. Using Proposition 2.2 again, we conclude that K° =
7 1((r(K))°) is a smooth bounded domain which is static convex with respect to its
hyperbolic centroid po. O

The radial function and support function of K € K with respect to the origin o are
defined by

(K,0):=max{teR | 0K}, 05"},
(K,z):=max{x-z | xeK}, ze%" .

In view of the polar duality, we have

r(K°,0) = TR h(K°,z)= X forall 6,z 8" . (3.14)

In particular,
h(K,z)=1i(x), for 1"~ !-almost every x € oK,

where z is the unit outward normal at x € 9K. In view of the polar duality (3.14), we have

~ 1 1 ~ = 1
7(K°,0)==——— = , 0(0zMz))=h(K°z)=—
0% ke wapey RO TR

It is clear that for any two subsets K;, K in H" such that K; C K, we have K7 D K3;
Moreover, for any subset K in H", K C K°°.
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Proposition 3.2. If a smooth bounded domain K in H" is static convex with respect to an interior
point po, then K° is also static convex with respect to pg, and K=K°°.

(i) The radial function of the hyperbolic polar body satisfies

coshr® = coihr’ (3.15)

(ii) The hyperbolic special linear transformations and the hyperbolic polar bodies satisfy
(¢r,0(K))® =¢r-10(K°), (3.16)
where L=t = (L~1)! denotes the transpose of the inverse of L €SL(n).
(iii) The hyperbolic affine support functions of K and K° satisfy
AH(K,z)AH(K°,0)=1, (3.17)
where z:vlgl(x) and 6= ﬁfor xedK.

Proof. Taking K = 7y, (K), then the static convexity of K with respect to pg is equiva-
lent to the convexity of K by Corollary 2.1. Then by Proposition 3.1, we conclude that
K°= n;ol ((npOA (K)A)O) is static convex with respect to pg. Moreover, K=K°° follows imme-
diately from K =K°°.

In view of (2.3) and (2.6), (3.15) follows directly from

N—=

=coshr®.

1
coshr  (1472)z [1+02\?2 or2
w0 1+72) — (1+()7)

Then (3.16) follows from L(K°) =L~*(K°) for all L € SL(#). Finally, (3.17) follows from
A(K,z)A(K°,0)=1,

where K and K° are convex bodies in R" with o as an interior point which are the polar
dual of each other, where z=v 1(x) and 6= %, for x €K, see [21]. O

]

Proposition 3.3. If a smooth bounded domain K in H" is strictly static convex with respect to
its interior point po, and p # —n, then

H(K)=as

p (K°). (3.18)

as

"“‘:NE

Proof. 1t follows from [21, Thm. 3.2] for p >0 and [39, Cor. 3.1] for general p # —n that

asp(K) —as,» (K°).

nz
p

Combining this with (3.12), we obtain (3.18). O
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4 Proofs of Theorems 1.3-1.5
Proof of Theorem 1.3. It follows from (3.12) that

/Hn 1 ﬂ+1dA ast (K) =as; (K),

where K = 7y, (K). Using Theorem 3.1 and Vol(K = [ Vdvol, we obtain the desired
inequality (1.7). Equality holds if and only if K is an elhpso1d, and hence K is a hyperbolic
ellipsoid in H". O

Proof of Theorem 1.4. Assume that K in H" is static convex with respect to its hyperbolic
centroid pg. Then K= 71, (K) is a convex body with its centroid o in R"” by Corollary 2.1
and Proposition 2.2. On the other hand, we have

(1=p)n .
/ W H, o (R) 7 dA=ast (K) =as,(K).
oK

Using Theorem 3.2 and Vol f x Vdvol, we obtain the desired inequalities (1.8)-(1.10).

Equality holds in (1.8) or (1.9) if and only if K is an centered ellipsoid in R", which is
equivalent to K is a hyperbolic ellipsoid with its hyperbolic centroid py. O

Proof of Theorem 1.5. It follows from Proposition 2.2 that if K has its hyperbolic centroid at
po, then K:= TUpy (K) is a convex body with centroid at the origin. Let K° CIR" be the polar
body of K with respect to the origin. By Proposition 3.1, we have Ty, (K°) = K°. Thus, by
(2.10) we get
Vol(K / Vdvol, Vol(K°)= [ Vdvol.
KO
Using the Blaschke-Santal6 inequality (3.13), we obtain the desired inequality

/ Vdvol-/ Vdvol < |[B"[2.
K Ke

The equality case in the Blaschke-Santal6 inequality implies that K is an ellipsoid with its
centroid o in R". Therefore, K is a hyperbolic ellipsoid in H" with its hyperbolic centroid
at po. O
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