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Examples of Ricci Solitons
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Abstract. In this survey paper, we discuss various examples of Ricci solitons and their
constructions. Some open questions related to the rigidity and classification of Ricci
solitons will be also discussed through those examples.
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1 Introduction

Ricci flow was introduced by Hamilton in 1982 [33], which is a parabolic equation for
Riemannian metrics on a Riemannian manifold,

∂g
∂t

=−2Ric(g), (1.1)

where Ric(g) is a Ricci tensor of g. As a class of singularity models, Ricci soliton plays a
crucial role in the singularity analysis of Ricci flow ([34, 47]).

A Riemannian metric g on Mn is called a gradient Ricci soliton if there exists a smooth
(potential) function f such that †

Rij+σgij =∇i∇j f , (1.2)

where the constant σ can be normalized as −1,0,1 according to the type of Ricci solitons,
namely, expanding, steady or shrinking, respectively. By a family of diffeomorphisms
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generated by the vector field X =−∇ f and suitable rescalings, a shrinking or steady
Ricci soliton generates an ancient Ricci flow, which is defined for all t∈ (−∞,0].

In n=2, it is known that there are only two examples of ancient non-flat Ricci solitons,
namely, the cigar solution and the round sphere (cf. [15, 23]). One can also find suitable
potential functions on Rn so that the flat metric gives an expanding or shrinking solitons,
which are known as Gaussian shrinking or expanding solitons.

Before we state the result in n=3, we recall

Definition 1.1 (κ-noncollapse). (M,g) is an n-dimensional manifold which is κ-noncollapsed
on scales r0 if there exists some κ>0 such that for all p∈M

vol(B(p,r))≥κrn,

whenever |Rm(q)|≤r−2 (r≤r0) for all q∈B(p,r). (M,g) is κ-noncollapsed if it is κ-noncollapsed
on all scales r≤∞.

A κ-noncollapsed ancient solution g(t) of (1.1) is called a κ-solution if it has nonneg-
ative curvature operator. In n=3, the condition is the same as the nonnegative sectional
curvature. Thus by the Hamilton-Ivey curvature pinching estimate [36], any non-flat 3d
κ-noncollapsed ancient solution is a κ-solution. Hence, we have following classification
of 3d κ-noncollapsed ancient Ricci solitons.

Theorem 1.1 (Classification of 3d κ-noncollapsed ancient Ricci solitons [7,44]). Let (M,g)
be a 3d κ-noncollapsed Ricci solitons. Then the universal covering of (M,g) is one of following
two cases:

1) Shrinking. It is either a round 3d sphere or a product of 2d round sphere and line;
2) Steady. It is the Byrant soliton up to a scale.

Case 1) comes from a result of Perelman for nonnegative shrinking Ricci solitons by the
splitting argument with the maximum principle [47] (also a general result of Munteanu-
Wang for higher dimensional gradient shrinking Ricci solitons with non-negative curva-
ture operator [44]). Case 2) comes from a result of Brendle [7], which solved a conjecture
of Perelman about the uniqueness of 3d κ-noncollapsed Ricci soliton [47]. The Byrant
soliton is a rotationally steady Ricci soliton with the maximal scalar curvature 1 [12].

Recently, Theorem 1.1 has been generalized for 3d ancient κ-solutions as follows [8,
10].

Theorem 1.2 (Classification of 3d ancient κ-solutions [8,10]). Let (M,g) be a non-flat ancient
κ-solution, Then

1) Noncompact. It is isometric to either shrinking cylinders or the Bryant soliton flow up to a
scale;

2) Compact. It is either isometric to 3d shrinking quotient spheres or Perelman’s solution.

Case 1) in Theorem 1.2 is proved by Brendle [8], and also by Bamler-Kleiner [5]. Case 2)
is proved by Brendle-Daskalopoulos-Sesum [10]. The Perelman’s solution in Case 2) is a
compact ancient κ-solution of type II on S3 [47].


