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Abstract. In this survey paper, we discuss various examples of Ricci solitons and their
constructions. Some open questions related to the rigidity and classification of Ricci
solitons will be also discussed through those examples.
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1 Introduction

Ricci flow was introduced by Hamilton in 1982 [33], which is a parabolic equation for
Riemannian metrics on a Riemannian manifold,

∂g
∂t

=−2Ric(g), (1.1)

where Ric(g) is a Ricci tensor of g. As a class of singularity models, Ricci soliton plays a
crucial role in the singularity analysis of Ricci flow ([34, 47]).

A Riemannian metric g on Mn is called a gradient Ricci soliton if there exists a smooth
(potential) function f such that †

Rij+σgij =∇i∇j f , (1.2)

where the constant σ can be normalized as −1,0,1 according to the type of Ricci solitons,
namely, expanding, steady or shrinking, respectively. By a family of diffeomorphisms
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generated by the vector field X =−∇ f and suitable rescalings, a shrinking or steady
Ricci soliton generates an ancient Ricci flow, which is defined for all t∈ (−∞,0].

In n=2, it is known that there are only two examples of ancient non-flat Ricci solitons,
namely, the cigar solution and the round sphere (cf. [15, 23]). One can also find suitable
potential functions on Rn so that the flat metric gives an expanding or shrinking solitons,
which are known as Gaussian shrinking or expanding solitons.

Before we state the result in n=3, we recall

Definition 1.1 (κ-noncollapse). (M,g) is an n-dimensional manifold which is κ-noncollapsed
on scales r0 if there exists some κ>0 such that for all p∈M

vol(B(p,r))≥κrn,

whenever |Rm(q)|≤r−2 (r≤r0) for all q∈B(p,r). (M,g) is κ-noncollapsed if it is κ-noncollapsed
on all scales r≤∞.

A κ-noncollapsed ancient solution g(t) of (1.1) is called a κ-solution if it has nonneg-
ative curvature operator. In n=3, the condition is the same as the nonnegative sectional
curvature. Thus by the Hamilton-Ivey curvature pinching estimate [36], any non-flat 3d
κ-noncollapsed ancient solution is a κ-solution. Hence, we have following classification
of 3d κ-noncollapsed ancient Ricci solitons.

Theorem 1.1 (Classification of 3d κ-noncollapsed ancient Ricci solitons [7,44]). Let (M,g)
be a 3d κ-noncollapsed Ricci solitons. Then the universal covering of (M,g) is one of following
two cases:

1) Shrinking. It is either a round 3d sphere or a product of 2d round sphere and line;
2) Steady. It is the Byrant soliton up to a scale.

Case 1) comes from a result of Perelman for nonnegative shrinking Ricci solitons by the
splitting argument with the maximum principle [47] (also a general result of Munteanu-
Wang for higher dimensional gradient shrinking Ricci solitons with non-negative curva-
ture operator [44]). Case 2) comes from a result of Brendle [7], which solved a conjecture
of Perelman about the uniqueness of 3d κ-noncollapsed Ricci soliton [47]. The Byrant
soliton is a rotationally steady Ricci soliton with the maximal scalar curvature 1 [12].

Recently, Theorem 1.1 has been generalized for 3d ancient κ-solutions as follows [8,
10].

Theorem 1.2 (Classification of 3d ancient κ-solutions [8,10]). Let (M,g) be a non-flat ancient
κ-solution, Then

1) Noncompact. It is isometric to either shrinking cylinders or the Bryant soliton flow up to a
scale;

2) Compact. It is either isometric to 3d shrinking quotient spheres or Perelman’s solution.

Case 1) in Theorem 1.2 is proved by Brendle [8], and also by Bamler-Kleiner [5]. Case 2)
is proved by Brendle-Daskalopoulos-Sesum [10]. The Perelman’s solution in Case 2) is a
compact ancient κ-solution of type II on S3 [47].
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Although the classification of Ricci solitons in n=3, in particular with the κ-noncollaped
conditions, is completely finished, the higher dimensional case is more complicated.
There are many new examples of Ricci solitons with different topology and geometry.
In this survey paper, we will discuss some open problems related to the rigidity and
classification of Ricci solitons through various examples.

2 Examples and constructions

In this section, we present variant examples of Ricci solitons and as well as ancient solu-
tions. These examples may help us to classify Ricci solitons under suitable geometric con-
dition. We will discuss these examples according to their different construction method
below.

2.1 Examples via ODE method

By reducing the soliton equation to solving a class of ODE, Bryant constructed a rotation-
ally symmetric Ricci soliton on Rn as follows [12].

Let gSn−1 (n≥3) denote the standard metric on the unit (n−1)-sphere Sn−1. We con-
sider a warped product steady Ricci soliton on Rn by the form

g=dr2+ϕ(r)2gSn−1 , (2.1)

where ϕ(r) is smooth function for r ∈ (0,+∞) with asymptotic behavior ϕ(r)= r+O(1)
near r=0. It was obtained in [12].

Example 2.1 (Bryant Ricci soliton). There is a unique solution ϕ(r) depending only on the
scalar curvature at the original such that the metric of form (2.1) gives an O(n)-invariant
steady Ricci soliton, called the Bryant Ricci soliton.

One can show that ϕ satisfies the asymptotic behavior at infinity,

C−1r
1
2 ≤ϕ(r)≤Cr

1
2 ,ϕ′(r)=O

(
r−

1
2

)
and ϕ′′(r)=O

(
r−

3
2

)
. (2.2)

Moreover, g has positive curvature operator with behavior of sectional curvature as

Krad=O
(
r−2), Ksph=O

(
r−1

)
,

where Krad denotes the sectional curvature of a plane passing through the radial vector
∂
∂r and Ksph denotes the sectional curvature of a plane perpendicular to ∂

∂r . In particular,
the scalar curvature has a linear decay. The volume behavior of g can also be obtained,

Vol(B(O,r))≈
∫ r

0
s

n−1
2 ds≈ r

n+1
2 .

Under the κ-noncollapsed condition, it is known that the Bryant Ricci soliton is the
only one up to scalings with nonnegative curvature operator and linear curvature decay
by a result of Deng-Zhu [28]. Actually, we have
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Theorem 2.1 ([28]). Let (M,g) be an n-dimensional (n≥4) noncompact κ-noncollapsed steady
(gradient) Ricci soliton with nonnegative curvature operator. Then it is rotationally symmetric if
its scalar curvaturte satisfies

R(x)≤ C
ρ(x)

,

where ρ(x)=dist(x,p0).

Other characters related to the rigidity of Bryant Ricci soliton have also been exten-
sively studied in [27, 50–53], etc.

By the ODE method, Cao began to construct expanding and steady Kähler-Ricci soli-
tons on Cn in 30 years ago [13]. Each ω of these metrics is U(n)-invariant which is deter-
mined by a Kähler potential ϕ(r) on (Cn;z) such that

ω=
√
−1∂∂̄ϕ(r), (2.3)

where r2 = zz̄=∑= zi z̄i. Similar with the Bryant Ricci soliton, Cao’s steady Kähler-Ricci
soliton also depends only on the scalar curvature at the original and has positive bi-
sectional (actually sectional) curvature. Moreover, the curvature has a linear decay when
n≥2. ‡ Unfortunately, this steady Kähler-Ricci soliton is κ-collapsed. Actually, by a result
of Deng-Zhu [25, 26], any κ-noncollapsed steady Kähler-Ricci soliton with non-negative
bisectional curvature should be flat. However, up to now we do not know whether Cao’s
steady Kähler-Ricci soliton is the only one with positive bisectional curvature or not.

The Cao’s method has been generalized to construct shrinking Kähler-Ricci solitons
on holomorphic line bundles over CPn−1 by Feldman-Ilmanen-Knopf [32] as follows. Let
L be the tautological holomorphic line bundle over CPn−1. Then for any integer k, the
space L−k\CPn−1 is biholomorphic to Cn\{0}/Zk. Thus any U(n)-invariant metric on
L−k can be regarded as an extending metric of form (2.3) on Cn\{0}/Zk.

Example 2.2 (FIK Ricci solitons). For any integer 0< k < n and positive number p > 0,
there is a shrinking Kähler-Ricci soliton on L−k. Moreover, the tangent metric at infinity
is a Kähler cone Cn\{0} given by

h(z) := |z|2p−2
(

δαβ̄+(p−1)|z|−2z̄ᾱzβ
)

dzαdz̄β̄.

Up to now, all known non-trivial examples of complete shrinking Ricci solitons arise
from Kähler geometry. In n=2, it was recently classified that there are only two kinds of
complete shrinking Ricci solitons, one is of FIK Ricci solitons above, another is called the
blow-up solution constructed by Bamler-Cifarelli-Conlon-Deruelle [4] (also see Example
2.8 below).

The Byrant’s method can be generalized to construct steady Ricci solitons with mul-
tiple warped products. Appleton considered the following warped product metric on Lk

‡When n=1, the soliton is just the cigar solution with exponential decay curvature.
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with positive integer k via the Hopf fibration π : S2n−1→CPn−1 [2],

g=ds2+ga(s),b(s)=ds2+a(s)2σ⊗σ+b(s)2π∗gCPn−1 , (2.4)

where L is the tautological holomorphic line bundle over CPn−1 as in Example 2.2, and
gCPn−1 is the Fubini-Study metric on CPn−1.

Example 2.3 (Appleton’s examples). Let k>n. Then there exists a complete κ-noncollapsed
steady Ricci soliton of form (2.4) on the completion of R>0×S2n−1/Zk by adding CPn−1

at the origin, which is diffeomorphic to Lk. Moreover, we have

a∼b∼C
√

s as s→∞

for a constant C> 0 and the soliton is asymptotic to the quotient of the 2n-dimensional
Bryant soliton by Zk at infinity. In particular, the curvature operator of g is positive
outside of a compact subset and the scalar curvature has a linear decay at infinity.

2.2 Examples via the perturbation/deformation method

We first recall the Deruelle’s construction for a class of expanding Ricci solitons which
are asymptotic to cone metrics [29, 30].

Definition 2.1. Let (Xn−1,gX) be a compact Riemannian manifold and (C(X),dr2+r2gX) an
n-dimensional cone metric with the link (X,gX). An expanding Ricci soliton (Mn,g; f ) is asymp-
totically to a cone metric (C(X),dr2+r2gX) if there exists a compact K⊂M, a positive radius R,
a diffeomorphism ϕ : M\K→C(X)\B(o,R) such that

sup
∂B(o,r)

∣∣∣∇k
(

ϕ∗g−gC(X)

)∣∣∣
gC(X)

≤O(r−2−k), ∀k∈N,

f
(

ϕ−1(r,x)
)
=

r2

4
, ∀(r,x)∈C(X)\B(o,R),

fk(r)= o(1), as r→+∞, ∀k≥0.

Example 2.4 (Deruelle’s expanding Ricci solitons). Let (Xn−1,gX) be a smooth simply
connected compact Riemmanian manifold such that the curvature operator Rm(gX)≥1.
Then there exists a unique expanding Ricci soliton with nonnegative curvature operator,
which is asymptotic to the cone metric (C(X),dr2+r2gX) with the link (Xn−1,gX).

Deruelle used a continuity method to construct the expanding Ricci solitons in Ex-
ample 2.4. By Böhm-Wilking’s result [6], one can start (X,gX) via the normalized Ricci
flow to obtain a family of metrics (g(s))s∈[0,+∞] on X with constant volume and positive
uniformly bounded curvature operator, which deform to the round sphere

(
X,c2gSn−1

)
,

where cn−1=Vol(X,gX)/Vol
(
Sn−1,gSn−1

)
. Thus, the initial cone metric (C(X),dr2+r2gX)

can be connected to the cone metric (C(Sn−1),dr2+(cr)2gSn−1) by a family of cone metrics



Zhao Z and Zhu X / J. Math. Study, 58 (2025), pp. 82-95 87

C(Xt), whose link Xt =(X,gt) has positive uniformly bounded curvature operator. Note
that the cone metric (C

(
Sn−1) is the Gauss metric, i.e., the Euclidean metric on Rn, which

can be also regarded as an expanding Ricci soliton. By the deformation method, Deruelle
proved that there exist a family of expanding Ricci solitons with nonnegative curvature
operator, each of which is asymptotic to the above cone metric on C(Xt).

We also note that Conlon-Deruelle gave necessary and sufficient conditions for a
Kähler equivariant resolution of Kähler cone to admit a unique asymptotically conical
expanding gradient Kähler-Ricci soliton [19]. As a consequence, they constructed a class
of expanding Kähler-Ricci solitons by solving certain complex Monge-Ampère equations.

The above deformation method has also been generalized to construct steady gra-
dient Kähler-Ricci solitons by Cifarelli-Conlon-Deruelle [20] via the complex Monge-
Ampère equation. Let (C0,g0) be a Calabi-Yau cone of complex dimension n ≥ 2 with
complex structure J0, Calabi-Yau cone metric g0, radial function r, and trivial canonical
bundle. This means that

ωg0 =
√
−1∂∂̄r2

is a Ricci flat metric. Following Cao’s ODE construction in [13], Cifarelli-Conlon-Deruelle
showed that there exists a family of incomplete steady Kähler-Ricci solitons ωa with same
soliton vector field X = 2r∂r on C0 [20, Proposition 2.18]. We note that ωa has the same
asymptotic behavior at infinity of C0, it is not a cone metric in general.

Let π : M→C0 be a crepant resolution of C0 with induced complex structure J=π∗ J0
such that the real holomorphic torus action on C0 generated by J0r∂r extends to M and the
holomorphic vector field 2r∂r on C0 lifts to a real holomorphic vector field X=π∗ (2r∂r)
on M. Set t := log

(
r2) and define the Kähler form

ω̂ :=
i
2

∂∂̄

(
nt2

2

)
on C0.

Cifarelli-Conlon-Deruelle obtained.

Example 2.5 (CCD’s steady Kähler-Ricci solitons). In each Kähler class k of M, up to the
flow of X, there exists a unique complete steady Kähler-Ricci soliton ω ∈ k with soliton
vector field X and with LJXω=0 such that for all ε∈(0,1), there exist constants C(i, j,ε)>0
such that ∣∣∣∇̂iL(j)

X (π∗ω−ω̂)
∣∣∣

ĝ
≤C(i, j,ε)t−ε− i

2−j, ∀ i, j∈N0,

where ĝ denotes the Kähler metric associated to ω̂ and ∇̂ is the corresponding Levi-Civita
connection.

In Examples 2.5, Cifarelli-Conlon-Deruelle further proved the Kähler-Ricci soliton ω
converges at a polynomial rate to the Cao’s steady Kähler-Ricci soliton ωa at infinity of
cone C0. Thus the above examples also show that there is no uniqueness property for the
steady Ricci solitons in general even with same topology and same metric behavior at
infinity.
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2.3 Examples via rescaling of Ricci flows

There are many examples of ancient solutions of Ricci flow obtained as the limit of a
rescaled sequence of Ricci flows solutions. Perelman’s solution is one of such famous
examples on S3 [48].

Consider a solution to the Ricci flow with initial metric on S3 that looks like a long
cylinder S2× I (with radius one and length L ≫ 1), with two spherical caps, smoothly
attached to its boundary components. By [33], we know that after normalization the flow
converges to the round S3. Scale the initial metric and choose the time parameter in such
a way that the flow starts at time t0 = t0(L)< 0, goes singular at t= 0, and at t=−1 has
the ratio of the maximal sectional curvature to the minimal one equal to 1+ϵ. Then after
taking subsequence, the sequence of solutions converge to an ancient κ-solution on S3 in
the Cheeger-Gromov sense. Thus we get

Example 2.6 (Perelman’s ancient solution). There exists an ancient κ–solution of type II
on S3 for any t∈ (−∞,0).

Recall that a compact ancient κ-solution (N,h(t)) (t∈ (−∞,0]) of type I means that it
satisfies

sup
N×(−∞,0]

(−t)|R(x,t)|<∞.

Otherwise, it is called type II, i.e., it satisfies

sup
M×(−∞,0]

(−t)|R(x,t)|=∞.

Since any closed ancient κ-solution of Type I is a shrinking Ricci soliton ([17, 46]) and
so it is a family of quotient shrinking spheres in dimension 3 by Hamilton’s theorem [33],
Perelman’s ancient solution must be type II. By the construction of Perelman’s ancient
solution, it has Z2×O(3)-symmetry, and seems more and more like a cylinder at the
middle part as time goes to −∞. Recently, the asymptotic behavior of Perelman’s ancient
solution has been proved by Angenent-Brendle-Daskalopoulos-Sesum as follows.

Theorem 2.2 ([1]). Let (S3,g(t)) be the Perelman’s ancient solution. Then we can find a reference
point q∈S3 such that the following holds. Let F(z,t) denote the radius of the sphere of symmetry
in (S3,g(t)) which has signed distance z from the reference point q. Then the profile F(z,t) has
the following asymptotic expansions:

(i) Fix a large number L. Then, as t→−∞, we have

F(z,t)2=−2t− z2+2t
2log(−t)

+o(
(−t)

log(−t)
)

for |z|≤L
√
−t.
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(ii) Fix a small number θ>0. Then as t→−∞, we have

F(z,t)2=−2t− z2

2log(−t)
+o(−t)

for |z|≤2
√

1−θ2
√
(−t)log(−t).

(iii) The reference point q has distance (2+o(1))
√
(−t)log(−t) from each tip. The scalar

curvature at each tip is given by (1+o(1)) log(−t)
(−t) . Finally, if we rescale the solution around

one of the tips, then the rescaled solutions converge to the Bryant soliton as t→−∞.

The high dimensional construction of Perelman’s ancient solution has also been studied.
We refer the reader to [11, 35].

Recently, Lai found another rescaling method to construct a new class of steady Ricci
solitons with positive curvature operator for any dimension n≥3 [37,39]. Lai’s construc-
tion is based on Deruelle’s expanding Ricci solitons in Example 2.4.

Let (Mi,gi,pi; fi) be Z2×O(n−1)-symmetric expanding solitons with nonnegative
curvature operator, where pi are the unique points fixed by the Z2×O(n−1)-action.
We denote the eigenvalues of the Ricci curvature at the point pi as λ1(g) and λ2(g) =
··· = λn(g), corresponding to the directions of edges and its orthogonal complement
subspace, respectively. For any given α ∈ (0,1), one can find a sequence of expanding
Ricci soliton with asymptotic volume ratio tending to zero satisfing λ1

λ2
(gi) = α. By the

compactness, after passing to a subsequence, Lai proved that (Mi,gi,pi; fi) converges to
a Z2×SO(n−1)-symmetric nonnegative curved steady Ricci solitons (Mα,gα, fα,pα). In
particular, λ1

λ2
(gα) = α. Since we have λ1

λ2
(g) = 0 on R×Bryn−1 for n≥ 4 or R×Cigar for

n=3, and λi
λ2
(g)=1 (i=3,...,n) on n-dimensional Bryant soliton, the new family of steady

Ricci solitons (Mα,gα,pα; fα) are different from the those R×Bryn−1 or R×Cigar.
These steady Ricci solitons are all κ-noncollapsed except n = 3. In particular, she

solved a conjecture of Hamilton for the existence of flying wings, each of which is neither
the 3d Bryant soliton nor the R×Cigar. Thus flying wings (n= 3) are all κ-collapsed by
the classification theorem, Theorem 1.1. Without of confusion, we call Lai’s examples of
steady Ricci solitons by Lai’s flying wings.

Example 2.7 (Lai’s flying wings). For any dimension n≥3, there exists a family of Z2×
O(n−1)-symmetric steady Ricci solitons with nonnegative curvature operator. Moreover,
they are all κ-noncollapsed except n=3.

In the Kähler case, Chan-Conlon-Lai constructed a family of U(1)×U(n−1)-invariant,
but not U(n)-invariant, complete steady gradient Kähler-Ricci solitons with strictly pos-
itive curvature operator on real (1,1)-forms on Cn for n ≥ 3, which can be regarded as
Kähler generalization of Lai’s flying wings [22].

By Perelman’s result [47], the asymptotic volume rate of any nonnegative curved an-
cient solution must be zero. For 3d flying wings, the tangent cone at infinity (asymptotic
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cone) is a metric cone over the interval [− α
2 , α

2 ] for some α∈ [0,π]. Let Γ0 be the fixed point
set of the O(n−1)-action. One can check Γ0 is also the integral curve of the vector field
∇ f . By the steady Ricci soliton equation, the scalar curvature is monotonically decreas-
ing along Γ0. Furthermore, Lai proved the relationship between the angle of asymptotic
cone and the limit of scalar curvature along the edges satisfies

lim
s→∞

R(Γ0(s))=R(p)sin2(
α

2
). (2.5)

On the other hand, Lai proved the only 3d steady Ricci soliton whose asymptotic cone is
a ray is the Bryant soliton [37]. Thus by (2.5) the scalar curvature does not decay to zero
along the edges for the family of 3d flying wings.

For the higher dimensional case n≥ 4, we know fewer properties about Lai’s exam-
ples besides the κ-noncollapsing property. Motivated from the mean curvature flow [14],
Haslhofer conjectured that the asymptotic cone of any 4d nonnegatived κ-noncollapsed
gradient Ricci soliton is either a ray or splits off a line [35]. Thus by Haslhofer’s conjec-
ture with the help of (2.5), the scalar curvature of 4d dimensional Lai’s examples should
decay to zero uniformly. It follows that the level set of the potential function f associated
to the induced metric behaves more and more like a Perelman’s ancient solution at in-
finity. Hence, there arises a natural conjecture for the optimal curvature decay of flying
wings as follows.

Conjecture 2.1. The scalar curvature of flying wings of dimension n≥4 satisfies

C−1

ρ(·) ≤R(·)≤ Clogρ(·)
ρ(·)

for some constant C>0 depends on the soliton metric g.

Recently, Ma-Mahmoudian-Sesum verified the above conjecture in 4d by assuming a
fast curvature decay condition [43].

It is also interesting to study the volume growth of steady Ricci solitons in Examples
2.7. By assuming that Conjecture 2.1 is true, we can prove

Proposition 2.1. In n=4, the volume growth of flying wings satisfies

Vol(B(p,r))∼ r
5
2
√

logr, ∀ r≫1.

Proof. We first estimate the volume of Perelman’s ancient solution gPel(t). Let F be the
profile function in Theorem 2.2. We see

F(z,t)≤2
√
(−t)

for all z and −t≫1. Since g(t) is a warped metric, by (iii) in Theorem 2.2, we get

Vol(BgPel (q,t))≤4π(2
√
(−t))2

√
(−t)log(−t)=16π(−t)

3
2

√
log(−t) (2.6)
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for −t≫1. On the other hand, by the estimates of profile function F on the neck region
in Theorem 2.2, we have

F(z,t)2≥−2t− 2z2

3log(−t)

for |z|≤
√
(−t)log(−t) and −t≫1. Thus we also get

Vol(BgPel (q,t))≥2π
∫ √

(−t)log(−t)

0

(
−2t− 2z2

3log(−t)

)
dz

=4π

(
(−t)

3
2

√
log(−t)− 1

9
(−t)

3
2

√
log(−t)

)
=

32
9

π(−t)
3
2

√
log(−t). (2.7)

Now we estimate the volume growth of 4d flying wings under the assumption that
the asymptotic behavior like the Perelman’s ancient solution. Choose sufficiently large
constant r0, such that the level sets Σr = {x : f (x) = r}, where r ≥ r0, behave sufficiently
like the Perelman’s ancient solution under some uniform scaling. Then the estimates (2.6)
and (2.7) hold for all −t≥ r0. Thus for r≫1, by (2.6) we get

Vol(B(p,r))≤16π
∫ r0

0
s

3
2
√

logsds+16π
∫ r

r0

s
3
2
√

logsds

=C+
32
5

πr
5
2
√

logr− 32
5

πr
5
2
0

√
logr0−

16
5

π
∫ r

r0

s
3
2

1√
logs

ds.

(2.8)

It follows

Vol(B(p,r))≤ 16
5

πr
5
2
√

logr−C.

Also, by (2.7) we obtain

Vol(B(p,r))≥ 64
45

πr
5
2
√

logr− 32
45

π
∫ r

r0

s
3
2

1√
logs

ds−C

≥ 64
45

πr
5
2
√

logr− 3
5

∫ r

r0

s
3
2
√

logsds−C

≥ 64
45

πr
5
2
√

logr− 3
5

Vol(B(p,r))−C.

Hence,

Vol(B(p,r))≥ 8
9

πr
5
2
√

logr−C.

The proposition is proved.
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2.4 Examples from singularity models

By Hamilton’s classification of singularity models [34] and Perelman’s κ-noncollapsed
result [47] for Ricci flow at finite time, the blow-up solution of type I singularities is
ancient as well as the blow-up solution of type II singularities is eternal, i.e, the flow
exists for any t∈ (−∞,∞). Actually, the first one is a shrinking Ricci soliton [16, 31, 45].
Recently, Bamler-Cifarelli-Conlon-Deruelle constructed such a Ricci soliton by studying
Kähler-Ricci flow on the toric surface, the blow-up space M=Blx(CP1×CP1) of CP1×CP1

at one point.
By choosing a suitable torus invariant initial metric on M, the Ricci flow ω(t) contracts

the exceptional divisor and two boundary divisors at the maximal time T. It suffices to
show that the blow-up solution with type I rescaling is a smooth ancient solution with
uniformly bounded curvature. By a recent work of Bamler on the tangent Ricci flow
associated to the Ricci flow [3], this blow-up solution is an ancient solution with isolated
orbifold singularities. Thus the remaining step is to prove that this solution has uniformly
bounded curvature and also removes the singularities.

Example 2.8 (BCCD’s shrinking Ricci soliton [4]). There exists a torus invariant shrinking
Kähler-Ricci soliton on the blow-up space N=Blx(C×CP1) of C1×CP1 at one point. This
Ricci soliton can be realized as a type I singularity model of Ricci flow on Blx(CP1×CP1).

Since the toric surface N in Example 2.8 is different to the bundle space in Example
2.2, this shrinking Kähler-Ricci soliton on N is not the FIK Ricci soliton. On the other
hand, the FIK Ricci soliton is the only non-flat shrinking Kähler-Ricci soliton on complex
surfaces with curvature decay by a classification result of Conlon-Deruelle-Sun [21]. Thus
the Ricci soliton in Example 2.8 can not have a curvature decay at infinity. Up to now,
the Ricci soliton in Example 2.8 is the only known complete non-splitting shrinking Ricci
soliton in n=4 with bounded curvature, but curvature does not decay to zero.

Type II Singularities of Ricci flow have also been found in the Kähler-Ricci flow on
a class of Fano manifolds called as Fano G-manifolds or more general Fano horosym-
metric manifolds in papers of Li-Tian-Zhu and Tian-Zhu [40, 49]. Actually, we have the
following theorem.

Theorem 2.3 ([40,49]). On any Fano G-manifold or more general Fano horosymmetric manifold,
which does not admit any Kähler-Ricci soliton, the Kähler-Ricci flow will develop the type II
Singularities whenever the initial metric is chosen in the canonical class.

It is known that there are two Fano compactifications of SO4(C) and one Fano com-
pactification of Sp4(C), on each of which does not admit a Kähler-Ricci soliton ([24, 41,
54]). Thus as an application of Theorem 2.3, we get

Example 2.9 (Type II Singularities on G-manifolds). There are two Fano compactifica-
tions of SO4(C) and one Fano compactification of Sp4(C), each of which the Kähler-Ricci
flow develops singularities of type II. As a consequence, the corresponding blow-up so-
lutions of Ricci flow are all eternal.
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It is not clear whether the corresponding blow-up solutions in Theorem 2.3 are exactly
steady Kähler-Ricci solitons or not. § Also it is interesting to study whether the G-group
action on those blow-up solutions are still preserved or not.
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