Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics

Xiuxiong Chen^{1,*}and Conghan Dong²

Received September 14, 2024; Accepted January 2, 2025; Published online June 25, 2025.

In honor of Professor Xiaochun Rong on his seventieth birthday

Abstract. In this note, we prove some gap theorems of asymptotic volume ratio for Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.

AMS subject classifications: 53C21

Key words: Asymptotic volume ratio, Ricci curvature, Einstein metrics.

1 Introduction

Given a complete noncompact Riemannian n-manifold (M^n,g) , we can define the volume ratio of a geodesic ball as

$$\operatorname{VR}(x,r) = \frac{\operatorname{Vol}_g B(x,r)}{\omega_n r^n}, \quad \forall x \in M \text{ and } r \ge 0,$$

and the asymptotic volume ratio as

$$AVR(M^n,g) := \lim_{r \to \infty} \frac{Vol_g B(x,r)}{\omega_n r^n}.$$

While VR(x,r) clearly depends on the choice of base points but $AVR(M^n,g)$ doesn't depend on the choice of base points at all.

If (M^n,g) has non-negative Ricci curvature, then the famous Bishop-Gromov theorem asserts that the volume ratio of a geodesic ball is a monotone decreasing function in terms

¹ Institute of Geometry and Physics, University of Science and Technology of China, Hefei 230026, China;

² Mathematics Department, Stony Brook University, Stony Brook, NY 11794, USA.

^{*}Corresponding author. Email addresses: xxchen@ustc.edu.cn (Chen X), conghan.dong@stonybrook.edu (Dong C)

of its radius $r \ge 0$. In this paper, we always assume Ric ≥ 0 unless otherwise explicitly claimed. Thus we always have

$$1 \ge VR(x,r) \ge AVR(M^n,g), \quad \forall x \in M, r \in (0,\infty).$$

If $AVR(M^n,g)=1$, then both equalities hold, which implies that (M^n,g) is isometric to the Euclidean space \mathbb{R}^n with standard Euclidean metric. More is true that there exists a dimension constant $\varepsilon(n)$ small enough such that if $AVR(M^n,g) \geq 1-\varepsilon(n)$, then any complete Ricci flat metric must be flat. This is a fact goes back to Anderson in 1990s. The first named author always believes that there must be a gap theorem for AVR with respect to complete Ricci flat metric.

Conjecture 1.1. Assume that (M^n,g) is a complete Riemannian n-manifold such that Ric(g)=0. If $AVR(M^n,g) > \frac{1}{2}$, then (M^n,g) is isometric to \mathbb{R}^n .

In this paper, we will prove some partial results toward these conjectures. We will confirm Conjecture 1.1 in the case when n = 4.

Theorem 1.1. Assume that (M^4,g) is a complete Riemannian 4-manifold such that Ric(g) = 0. If $AVR(M^4,g) > \frac{1}{2}$, then (M^4,g) is isometric to \mathbb{R}^4 .

In general dimensions, the following theorem holds.

Theorem 1.2. Assume that (M^n,g) is a complete Riemannian n-manifold such that $\operatorname{Ric}(g) \ge 0$ and $\int_{M^n} |\operatorname{Rm}|^{\frac{n}{2}} \operatorname{dvol}_g \le C$ for some constant $C \in (0,\infty)$. If $\operatorname{AVR}(M^n,g) > \frac{1}{2}$, then (M^n,g) is isometric to \mathbb{R}^n .

Along the proof, we can also reprove the following gap theorem for positive Einstein metrics. The following result has been proved in [4], see also [6]. Let \mathbb{S}^n be the standard round sphere with constant curvature 1.

Theorem 1.3. Assume (M^n,g) is an Einstein manifold satisfying Ric(g) = (n-1)g. There exists a uniform constant $\varepsilon(n) > 0$ such that, if $Vol(M^n,g) \ge Vol(\mathbb{S}^n) - \varepsilon(n)$, then (M^n,g) is isometric to \mathbb{S}^n .

2 Preliminaries

2.1 Harmonic radius

We firstly recall the definition of harmonic coordinates.

Definition 2.1. A coordinate chart (x^1, \dots, x^n) on a Riemannian manifold (M^n, g) is called harmonic if $\Delta_g x^k = 0$ for all $k = 1, \dots, n$.