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Abstract. In this note, we prove some gap theorems of asymptotic volume ratio for
Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.
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1 Introduction

Given a complete noncompact Riemannian n-manifold (M",g), we can define the volume
ratio of a geodesic ball as

_ Vol B(x,r)

VR(x,7) o

, VxeM and r>0,

and the asymptotic volume ratio as

AVR(M",g):= lim %(Zfﬂ’).
r—00 wyt
While VR(x,r) clearly depends on the choice of base points but AVR(M",g) doesn’t de-
pend on the choice of base points at all.
If (M",g) has non-negative Ricci curvature, then the famous Bishop-Gromov theorem
asserts that the volume ratio of a geodesic ball is a monotone decreasing function in terms
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of its radius » > 0. In this paper, we always assume Ric > 0 unless otherwise explicitly
claimed. Thus we always have

1>VR(x,r) > AVR(M",g), VxeM, re(0,00).

If AVR(M",g) =1, then both equalities hold, which implies that (M",g) is isometric to
the Euclidean space R"” with standard Euclidean metric. More is true that there exists
a dimension constant €(n) small enough such that if AVR(M",g) > 1—e€(n), then any
complete Ricci flat metric must be flat. This is a fact goes back to Anderson in 1990s.
The first named author always believes that there must be a gap theorem for AVR with
respect to complete Ricci flat metric.

Conjecture 1.1. Assume that (M",g) is a complete Riemannian n-manifold such that Ric(g)=0.
If AVR(M",g) > 1, then (M",g) is isometric to R".

In this paper, we will prove some partial results toward these conjectures. We will
confirm Conjecture 1.1 in the case when n=4.

Theorem 1.1. Assume that (M*,g) is a complete Riemannian 4-manifold such that Ric(g) =0.
If AVR(M?*,g) > %, then (M*,g) is isometric to R*.

In general dimensions, the following theorem holds.

Theorem 1.2. Assume that (M",g) is a complete Riemannian n-manifold such that Ric(g) >0
and [y, |Rm|2dvol, < C for some constant C € (0,00). If AVR(M",g) > 1, then (M",g) is
isometric to R".

Along the proof, we can also reprove the following gap theorem for positive Einstein
metrics. The following result has been proved in [4], see also [6]. Let 5" be the standard
round sphere with constant curvature 1.

Theorem 1.3. Assume (M",g) is an Einstein manifold satisfying Ric(g)=(n—1)g. There exists

a uniform constant e(n) >0 such that, if Vol(M",g) > Vol(S") —&(n), then (M",g) is isometric
to §™.

2 Preliminaries

2.1 Harmonic radius

We firstly recall the definition of harmonic coordinates.

Definition 2.1. A coordinate chart (x',---,x™") on a Riemannian manifold (M",g) is called har-
monic if Agx¥ =0 for all k=1,--- ,n.



