Regularity of Positive Solutions for an Integral System on Heisenberg Group

Authors

  • Weiyang Chen Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
  • Xiaoli Chen Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

DOI:

https://doi.org/10.4208/jms.v47n2.14.05

Keywords:

Ground state solutions, Heisenberg group, nonlinear integral system.

Abstract

In this paper, we are concerned with the properties of positive solutions of the following nonlinear integral systems on the Heisenberg group $\mathbb{H}^n$, \begin{equation} \left\{\begin{array}{ll} u(x)=\int_{\mathbb{H}^n}\frac{v^{q}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ v(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ w(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)v^{q}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ \end{array}\right.\end{equation}
for $x\in \mathbb{H}^n$, where $0<\alpha 1$ satisfying $\frac{1}{p+1} $+ $\frac{1}{q+1} + \frac{1}{r+1} = \frac{Q+α+β}{Q}.$ We show that positive solution triples $(u,v,w)\in L^{p+1}(\mathbb{H}^n)\times L^{q+1}(\mathbb{H}^n)\times L^{r+1}(\mathbb{H}^n)$ are bounded and they converge to zero when $|x|→∞.$

Published

2014-06-02

Issue

Section

Articles