Complete Convergence for Weighted Sums of Negatively Superadditive Dependent Random Variables
DOI:
https://doi.org/10.4208/jms.v47n3.14.04Keywords:
Negatively superadditive dependent random variables, Rosenthal type inequality, complete convergence.Abstract
Let $\{X_n,n\geq1\}$ be a sequence of negatively superadditive dependent (NSD, in short) random variables and $\{a_{nk}, 1\leq k\leq n, n\geq1\}$ be an array of real numbers. Under some suitable conditions, we present some results on complete convergence for weighted sums $\sum_{k=1}^na_{nk}X_k$ of NSD random variables by using the Rosenthal type inequality. The results obtained in the paper generalize some corresponding ones for independent random variables and negatively associated random variables.
Downloads
Published
2014-09-02
Issue
Section
Articles