On the Change of Variables Formula for Multiple Integrals
DOI:
https://doi.org/10.4208/jms.v50n3.17.04Keywords:
Change of variables, surface integral, divergent theorem, Cauchy-Binet formula.Abstract
We develop an elementary proof of the change of variables formula in multiple integrals. Our proof is based on an induction argument. Assuming the formula for $(m-1)$-integrals, we define the integral over hypersurface in $\mathbb{R}^m$, establish the divergent theorem and then use the divergent theorem to prove the formula for $m$-integrals. In addition to its simplicity, an advantage of our approach is that it yields the Brouwer Fixed Point Theorem as a corollary.
Downloads
Published
2017-09-02
Issue
Section
Articles