Non-Negative Integer Matrix Representations of a $\mathbb{Z}_{+}$-Ring

Authors

  • Zhichao Chen School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
  • Jiayi Cai School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
  • Lingchao Meng School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China
  • Libin Li School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

DOI:

https://doi.org/10.4208/jms.v54n4.21.02

Keywords:

Non-negative integer, matrix representation, irreducible $\mathbb{Z}_{+}$-module, $\mathbb{Z}_{+}$-ring.

Abstract

The $\mathbb{Z}_{+}$-ring is an important invariant in the theory of tensor category. In this paper, by using matrix method, we describe all irreducible $\mathbb{Z}_{+}$-modules over a $\mathbb{Z}_{+}$-ring $\mathcal{A}$, where $\mathcal{A}$ is a commutative ring with a $\mathbb{Z}_{+}$-basis{$1$, $x$, $y$, $xy$} and relations: $$ x^{2}=1,\;\;\;\;\; y^{2}=1+x+xy.$$We prove that when the rank of $\mathbb{Z}_{+}$-module $n\geq5$, there does not exist irreducible $\mathbb{Z}_{+}$-modules and when the rank $n\leq4$, there exists finite inequivalent irreducible $\mathbb{Z}_{+}$-modules, the number of which is respectively 1, 3, 3, 2 when the rank runs from 1 to 4.

Published

2021-06-29

Issue

Section

Articles