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Abstract. The initial-boundary value problem of an anisotropic porous medium equa-
tion N
= Zi( (o) )+ 3 )
=1 9% -1 o

is studied. Compared with the usual porous medium equation, there are two differ-
ent characteristics in this equation. One lies in its anisotropic property, another one
is that there is a nonnegative variable diffusion coefficient a(x,t) additionally. Since
a(x,t) may be degenerate on the parabolic boundary 0Q) x (0,T), instead of the bound-
edness of the gradient |Vu| for the usual porous medium, we can only show that
Vu e L*(0,T;L; .(Q)). Based on this property, the partial boundary value conditions
matching up with the anisotropic porous medium equation are discovered and two

stability theorems of weak solutions can be proved naturally.
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1 Introduction

Let QO C RN be a bounded smooth domain, T € (0,00) be a given positive constant. The
well-posedness problem and the regularity of weak solutions to the usual porous medium
equation

w=Au", (x,t)eQr=Qx(0,T), (1.1)
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or its revised form :
B(u)=Au, B(u)=|u|=signu, (x,t)€Qr, (1.2)
were addressed from the sixties to the eighties in the last century, one can refer to [1-6]

and the references therein. Meanwhile, by a parabolic version of De Giorgi’s technique,
DiBenedetto [7] studied the regularity of a general equation

B(u)r=V-a(x,t,u,Vu)+b(x,t,u,Vu), (xt)€Qr, (1.3)

with suitable assumptions on 4 and b. Later, Ziemer [8] approached a similar problem
with Moser’s iteration technique.

The main problems arising in the study of complicated real physical processes are
related primarily, to the nonlinearity of Eqs. (1.1)-(1.3). The first consequence of nonlin-
earity is the absence of a superposition principle, which applies to linear homogeneous
problems. This leads to an inexhaustible set of possible directions of evolution of a dis-
sipative process and also determines the appearance in a continuous medium of discrete
spatiotemporal scales. These characterize the properties of the nonlinear medium, which
are independent of external factors. More precisely, Eq. (1.1) exhibits the ideal barotropic
gas through a porous medium, while Eq. (1.3) is suggested as a model to describe the
spread of epidemic disease in heterogeneous environments or it is used as the mathe-
matical description for the dynamics of fluids with different conductivities in different
directions. A isotropic example of Eq. (1.3) is

N
ur=div(a +Zaba , (x,t)€Qr. (1.4)

The well-posedness problem of this equation was first studied in [9] by the author. We
found that, if one wants to prove the uniqueness (or the stability) of weak solutions, the
initial value condition

u(x,0)=up(x), x€Q, (1.5)

is always needed, but the homogeneous boundary value condition
u(x,t)=0, (x,t)€0Q2x(0,T), (1.6)

may be dispensable. The anisotropic evolutionary parabolic equation also has provoked
people’s attention. Song [10, 11] studied the existence and the uniqueness of the “very
weak” solution of the anisotropic porous medium equation modeled by

N
up=Y (u™)y, (x,t)€Qr. (1.7)
i=1
Henriques [12] established an interior regularity result for the solutions of (1.7). Li [13]
developed the finite element method to derive a special analytical solution of Eq. (1.7)
for time-independent diffusion.



