Life-Spans and Blow-Up Rates for a p-Laplacian Parabolic Equation with General Source

LONG Qunfei*

School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China.

Received 10 November 2022; Accepted 16 August 2023

Abstract. This article investigates the blow-up results for the initial boundary value problem to the quasi-linear parabolic equation with p-Laplacian

$$u_t - \nabla \cdot \left(|\nabla u|^{p-2} \nabla u \right) = f(u),$$

where $p \ge 2$ and the function f(u) satisfies

$$\alpha \int_0^u f(s) ds \le u f(u) + \beta u^p + \gamma, \quad u > 0$$

for some positive constants α, β, γ with $0 < \beta \le \frac{(\alpha - p)\lambda_{1,p}}{p}$, which has been studied under the initial condition $J_p(u_0) < 0$. This paper generalizes the above results on the following aspects: a new blow-up condition is given, which holds for all p > 2; a new blow-up condition is given, which holds for p = 2; some new lifespans and upper blow-up rates are given under certain conditions.

AMS Subject Classifications: 35K92, 35B44, 35A23

Chinese Library Classifications: O175.26

Key Words: *p*-Laplacian; parabolic equation; blow-ups; life-spans; blow-up rates.

1 Introduction

This article is concerned with the blow-up results on the initial boundary value problem

$$\begin{cases} u_{t}(x,t) - \nabla \cdot (|\nabla u(x,t)|^{p-2} \nabla u(x,t)) = f(u(x,t)), & (x,t) \in \Omega \times (0,T), \\ u(x,t) = 0, & (x,t) \in \partial \Omega \times (0,T), \\ u(x,0) = u_{0}(x) \ge 0, & x \in \overline{\Omega}, \end{cases}$$
(1.1)

^{*}Corresponding author. Email addresses: 201802003@gznu.edu.cn (Q. F. Long)

where $p \ge 2$, Ω is a bounded domain in \mathbb{R}^n $(n \ge 1)$ with sufficiently smooth boundary $\partial \Omega$ and the function f(u) is locally Lipschitz continuous on \mathbb{R} , f(0) = 0 and f(u) > 0 if u > 0, which satisfies

$$\alpha F(u) := \alpha \int_0^u f(s) ds \le u f(u) + \beta u^p + \gamma, \quad u > 0$$
 (C_p)

for some positive constants α, β, γ with

$$0 < \beta \le \frac{(\alpha - p)\lambda_{1,p}}{p},\tag{1.2}$$

throughout this article $\lambda_{1,p}$ is the principal eigenvalue of the p-Laplacian Δ_p . For the function f(u) satisfying other conditions, there are also many excellent research results on the blow-up issues of the problem (1.1), such as [1–3].

The blow-up issues for the problem (1.1) has been studied by Chung and Choi [4], the details are outlined below:

(RES1) If f(u) satisfies (C_p) and if the initial value $u_0 \in L^{\infty}(\Omega) \cap W_0^{1,p}(\Omega)$ as p > 2 or $u_0 \in C^1(\overline{\Omega})$ as p = 2 satisfies $J_p(0) < 0$, then the solution for the problem (1.1) blows up at some finite time T, which is given by

$$0 < T \le T_{U1} := \frac{\left(1 + \sqrt{\frac{\alpha}{2}}\right)^2}{\left(\alpha - 2\right)^2} \frac{\int_{\Omega} |u_0|^2 dx}{-J_p(0)},$$

where

$$J_p(t) = J_p(u(t)) = \int_{\Omega} \left(\frac{1}{p} |\nabla u|^p - (F(u) - \gamma) \right) dx.$$
 (1.3)

From [5, the blow-up criterion 4], it is well known that if f(u) satisfies the condition

$$(2+\varepsilon)\int_0^u f(s)ds \le uf(u) + \gamma, \quad u > 0, \ \varepsilon > 0, \tag{B}$$

then the blow-up criterion for the problem (1.1) with p=2 is given by

$$J_2(0) < \frac{(\alpha - 1)\gamma |\Omega|}{\alpha},\tag{1.4}$$

which implies that $J_2(0) \ge 0$ or $J_2(0) < 0$. Therefore, from **(RES1)**, it is well known that

- 1. the blow-up condition is not given for possible $J_p(u_0) \ge 0$;
- 2. the life-spans is still unresolved when for possible $J_p(u_0) \ge 0$;
- 3. the blow-up rate is still unresolved for both $J_p(u_0) < 0$ and possible $J_p(u_0) \ge 0$.