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Abstract. Motivated by a recent work of Wang-Yang [19] , we study the compactness
of extremals {uβ} for singular Hardy-Trudinger-Moser inequalities due to Hou [24] . In
particular, by the method of blow-up analysis, we conclude that, up to a subsequence,
uβ converges to an extremal in some sense as β tends to zero.
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1 Introduction

Let Ω be a smooth bounded domain in R2. The classical Trudinger-Moser inequality [1–5]
writes

sup
u∈W1,2

0 (Ω),||∇u||2⩽1

∫
Ω

eγu2
dx<∞, ∀γ⩽4π,

where W1,2
0 (Ω) denotes the standard Sobolev space and ||·||p denotes the usual Lp norm

for any p≥1. There are lots of extensions of this inequality. On this topic, among others,
we refer the readers to [6–12] and the references therein.

In particular, using a rearrangement argument, Adimurthi-Sandeep [7] proved that
for any β, 0<β<1, there holds

sup
u∈W1,2

0 (Ω),||∇u||2⩽1

∫
Ω

e4π(1−β)u2

|x|2β
dx<∞. (1.1)
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Later Csató-Roy [13] concluded that the above supremum can be obtained by some ex-
tremal function vβ ∈W1,2

0 (Ω) with ∥∇vβ∥2 =1. A more general form was established by
Yang-Zhu [14]. Precisely, let λ1(Ω) be the first eigenvalue of the Laplacian operator with
respect to the Dirichlet boundary condition, then for any α<λ1(Ω), there holds

sup
u∈W1,2

0 (Ω),||u||1,α⩽1

∫
Ω

e4π(1−β)u2

|x|2β
dx<∞, (1.2)

where

∥u∥1,α =

(∫
Ω
|∇u|2dx−α

∫
Ω

u2dx
) 1

2

denotes a norm on W1,2
0 (Ω), which is equivalent to ∥∇u∥2. Also, they proved the exis-

tence of extremals for the supremum in (1.2). We mention that similar results still hold in
the whole Euclidean space [15].

For any fixed β∈ (0,1), let uβ be an extremal function of the supremum in (1.2). One
may ask whether (uβ) is pre-compact with respect to β∈ [0,1). Recently, Wang-Yang [19]
demonstrated that, up to a subsequence, (uβ) converges to some u0 in C1(Ω) as β→ 0,
where u0 is an extremal function for the supremum in (1.2) with β=0. This partly answers
the above-mentioned question.

In this paper, we concern the compactness of extremal functions for a Hardy-Trudinger-
Moser inequality. Now we have fixed some notations. Let B⊂R2 be the unit disc. Brezis-
Marcus [16] improved the Hardy inequality∫

B
|∇u|2dx⩾

∫
B

u2

(1−|x|2)2 dx, ∀u∈W1,2
0 (B),

into ∫
B
|∇u|2dx−

∫
B

u2

(1−|x|2)2 dx⩾C
∫

B
u2dx, ∀u∈W1,2

0 (B), (1.3)

for some constant C>0. In view of (1.3),

||u||H =

(∫
B
|∇u|2dx−

∫
B

u2

(1−|x|2)2 dx
) 1

2

(1.4)

defines a norm on C∞
0 (B). Let the function space H be a completion of C∞

0 (B) under the
norm (1.4). Then, it is clear to see that H is a Hilbert space with the inner product

⟨u,v⟩H =
∫

B
⟨∇u,∇v⟩dx−

∫
B

uv
(1−|x|2)2 dx.

In addition, the important fact

W1,2
0 (B)⊂H ⊂∩p⩾1Lp(B) (1.5)


