$C^{1,\alpha}$ -Regularity for p-Harmonic Functions in SU(3)

YU Chengwei*

Department of Basic, China Fire and Rescue Institute, Beijing 102202, China.

Received 6 September 2022; Accepted 9 November 2023

Abstract. This artical concerns the $C_{loc}^{1,\alpha}$ -regularity of weak solutions u to the degenerate subelliptic p-Laplacian equation

$$\triangle_{\mathcal{H},p}u(x) = \sum_{i=1}^{6} X_i^* (|\nabla_{\mathcal{H}}u|^{p-2} X_i u) = 0,$$

where \mathcal{H} is the orthogonal complement of a Cartan subalgebra in SU(3) with the orthonormal basis composed of the vector fields $X_1,...,X_6$. When $1 , we prove that <math>\nabla_{\mathcal{H}} u \in C^{\alpha}_{loc}$.

AMS Subject Classifications: 35H20, 35B65

Chinese Library Classifications: O175.29

Key Words: p-Laplacian equation; $C^{1,\alpha}$ -regularity; SU(3); Caccioppoli inequality; De Giorgi; p-harmonic function.

1 Introduction

Denote by SU(3) the special unitary group of 3×3 complex matrices endowed with a horizontal vector field $\nabla_{\mathcal{H}} = \{X_1, ..., X_6\}$; see Section 2 for more geometries and properties of SU(3). Given a domain $\Omega \subset SU(3)$, we consider the quasilinear subelliptic equation

$$\sum_{i=1}^{6} X_i^*(a_i(\nabla_{\mathcal{H}} u)) = 0 \quad \text{in } \Omega.$$
 (1.1)

Here $\nabla_{\mathcal{H}} u = (X_1 u, ..., X_6 u)$ is the horizontal gradient of a function $u \in C^1(\Omega)$; X_i^* is the formal adjoint of X_i ; the vector function $a := (a_1, ..., a_6) \in C^2(\mathbb{R}^6, \mathbb{R}^6)$ satisfies the following

^{*}Corresponding author. Email addresses: chengweiyu@buaa.edu.cn (C. W. Yu)

growth and ellipticity conditions:

$$\sum_{i,j=1}^{6} \frac{\partial a_i(\xi)}{\partial \xi_j} \eta_i \eta_j \ge l_0 (\delta + |\xi|^2)^{\frac{p-2}{2}} |\eta|^2, \tag{1.2}$$

$$\sum_{i,i=1}^{6} \left| \frac{\partial a_i(\xi)}{\partial \xi_i} \right| \le L(\delta + |\xi|^2)^{\frac{p-2}{2}},\tag{1.3}$$

$$|a_i(\xi)| \le L(\delta + |\xi|^2)^{\frac{p-2}{2}} |\xi|$$
 (1.4)

for all $\xi, \eta \in \mathbb{R}^6$, where $0 \le \delta \le 1$, $1 and <math>0 < l_0 < L$. Note that conditions (1.2) and (1.3) are the same as conditions [1, (2.3) and (2.4)], but the condition (1.4) is stronger than the condition [1, (2.5)]

$$|a_i(\xi)| \le L(\delta + |\xi|^2)^{\frac{p-1}{2}}.$$
 (1.5)

We call a function $u \in W^{1,p}_{\mathcal{H},\mathrm{loc}}(\Omega)$ as a weak solution to (1.1) if

$$\sum_{i=1}^{6} \int_{\Omega} a_i(\nabla_{\mathcal{H}} u) X_i \varphi dx = 0, \qquad \forall \varphi \in C_0^{\infty}(\Omega).$$
 (1.6)

Here $W^{1,p}_{\mathcal{H},\mathrm{loc}}(\Omega)$ is the first order p-th integrable horizontal local Sobolev space, namely, all functions $u \in L^p_{\mathrm{loc}}(\Omega)$ with their distributional horizontal gradients $\nabla_{\mathcal{H}} u \in L^p_{\mathrm{loc}}(\Omega)$. Given the typical example $a(\xi) = (\delta + |\xi|^2)^{\frac{p-2}{2}} \xi$, Eq. (1.1) becomes the non-degenerate p-Laplacian equation

$$\sum_{i=1}^{6} X_i ((\delta + |\nabla_{\mathcal{H}} u|^2)^{\frac{p-2}{2}} X_i u) = 0 \quad \text{if } \delta > 0,$$
(1.7)

and the p-Laplacian equation

$$\sum_{i=1}^{6} X_i(|\nabla_{\mathcal{H}} u|^{p-2} X_i u) = 0 \quad \text{if } \delta = 0.$$
 (1.8)

Particularly, we call weak solutions to (1.8) as *p*-harmonic functions in $\Omega \subset SU(3)$.

In the linear case p=2, p-harmonic functions in SU(3) are usually called as harmonic functions and their C^{∞} -regularity was established by Hörmander [2]. In the quasilinear case $p \neq 2$, Domokos-Manfredi [1] obtained the local boundedness of horizontal gradient $\nabla_{\mathcal{H}} u$ of p-harmonic functions u in SU(3), that is, $\nabla_{\mathcal{H}} u \in L^{\infty}_{loc}(\Omega)$. Moreover, when $2 , they obtain the Hölder regularity of <math>\nabla_{\mathcal{H}} u$, that is, $\nabla_{\mathcal{H}} u \in C^{0,\alpha}(\Omega)$ for some $\alpha \in (0,1)$ independent of u. But when $1 , the Hölder regularity of <math>\nabla_{\mathcal{H}} u$ is unknown.

For the general quasi-linear equation (1.1) in SU(3), Domokos-Manfredi [1] also built up analogue regularity. To be precise, if a satisfies conditions (1.2), (1.3) and (1.5) for some