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Abstract. In this paper we firstly prove the global well-posedness for the compress-
ible Hall-magnetohydrodynamic system in a bounded domain when the initial data
is small. On this basis, we continue to study the convergence of the corresponding
equations with the well-prepared initial data as the Mach number tends to zero.
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1 Introduction

In this paper we consider the compressible Hall-magnetohydrodynamic (Hall-MHD) sys-
tem (see [1]) in a bounded domain () as:

dip+div(pu) =0, (1.1)
9t (pu)+div(pu®@u)+VP(p) —pAu—(A+u)Vdivu =curlH x H, (1.2)

curlH x H >

H+V x (qu+ — VxcurlH, divH=0. (1.3)

Here the unknowns are p, u = (u1,us,u3) € R3, H=(H;,Hy,H;) € R® denoting the density,
the velocity field and the magnetic field, respectively. Let P(p) be a C! smooth function
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of p, we further assume that P’(-) >0 and P(0) =0, P’(1) =1 for simplicity. The spatial
domain Q) is a bounded domain with smooth boundary d() in R3. The parameters p, A
denote the shear and bulk viscous coefficient respectively. For simplicity, let A and u be
positive constants.

For the system (1.1)-(1.3), the initial and boundary conditions are prescribed as:

u-n=0, curluxn=0, H-n=0, curlHxn=0, (x,£)€0Q2x (0,T), (1.4)
(p,u,H)(x,0) = (po,u0,Ho)(x), xeQ. (1.5)

In many physical phenomena such as magnetic reconnection in space plasmas, star
formation, neutron stars and geo-dynamo, the Hall-MHD equtions are involved [2]. If
we neglect the term (VxH)xH 3 (1.3) which reflects the Hall effect, then the system (1.1)-
(1.3) is known as the compressible MHD system. There have been many research results
on MHD, which can be found in [3-7] and the references cited therein. Li and Wang [4]
studied the local strong solution, Hu-Wang [5] and Suen-Hoff [6] obtained the global
weak solutions for large initial data and small initial data respectively. The low Mach
number limit to the compressible isentropic MHD equations was studied in [7] in the
whole space IR3 or the torus T3. For the bounded domain Q) C R?, Dou-Jiang-Ju [3] and
Dou-Ju [8] proved the incompressible limit. Fan, Li and Nakamura [9] generalized the
results to three-dimensional case.

Next, let’s review existing results on the Hall-MHD system. For incompressible case,
the results of well-posedness can be referred to Acheritogaray-Degond-Frourelle-Liu [1],
Dumas-Sueur [10] on global weak solutions, Chae-Degond-Liu [11] on the local smooth
solutions. For compressible case, Fan-Alsaedi-Hayat-Nakamura-Zhou [12] studied the
global existence and time decay rate of smooth solutions. The first author [13] established
the zero Mach limit of the system (1.1)-(1.3) on R5.

In this present paper, we mainly establish the global existence of strong solutions
and then show the convergence of the system (1.1)-(1.5) as Mach number tends to zero,
namely we generalize some results in [3,8,9] to the Hall-MHD system.

Firstly, there are some scaling transformations on the functions(p,u,H) as the follow-
ing:

p(x,t)=p(x,et), u(xt)=eu(xet), H(x,t)=€eH(x,et),
where € is the (scaled) Mach number, We usually consider the density variations is small
enough, i.e.,

€ :=14€q°.
So we can rewrite the system (1.1)-(1.5) as:
€
Aq° +1u -V + (1+€€q)divu€ =0, (1.6)

1
p0u+puc- Vut+ EP’(l +€4°) Vg€ + pcurl?uf — (A+-2p) Vdivu® = curl HE x H¢, (1.7)



