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Abstract. In this paper we firstly prove the global well-posedness for the compress-
ible Hall-magnetohydrodynamic system in a bounded domain when the initial data
is small. On this basis, we continue to study the convergence of the corresponding
equations with the well-prepared initial data as the Mach number tends to zero.
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1 Introduction

In this paper we consider the compressible Hall-magnetohydrodynamic (Hall-MHD) sys-
tem (see [1]) in a bounded domain Ω as:

∂tρ+div(ρu)=0, (1.1)

∂t(ρu)+div(ρu⊗u)+∇P(ρ)−µ∆u−(λ+µ)∇divu=curlH×H, (1.2)

∂tH+∇×
(

H×u+
curlH×H

ρ

)
=−∇×curlH, divH=0. (1.3)

Here the unknowns are ρ, u=(u1,u2,u3)∈R3, H=(H1,H2,H3)∈R3 denoting the density,
the velocity field and the magnetic field, respectively. Let P(ρ) be a C1 smooth function
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of ρ, we further assume that P′(·)> 0 and P(0)= 0, P′(1)= 1 for simplicity. The spatial
domain Ω is a bounded domain with smooth boundary ∂Ω in R3. The parameters µ, λ

denote the shear and bulk viscous coefficient respectively. For simplicity, let λ and µ be
positive constants.

For the system (1.1)-(1.3), the initial and boundary conditions are prescribed as:

u·n=0, curlu×n=0, H ·n=0, curlH×n=0, (x,t)∈∂Ω×(0,T), (1.4)

(ρ,u,H)(x,0)=(ρ0,u0,H0)(x), x∈Ω. (1.5)

In many physical phenomena such as magnetic reconnection in space plasmas, star
formation, neutron stars and geo-dynamo, the Hall-MHD equtions are involved [2]. If
we neglect the term (∇×H)×H

ρ in (1.3) which reflects the Hall effect, then the system (1.1)-
(1.3) is known as the compressible MHD system. There have been many research results
on MHD, which can be found in [3–7] and the references cited therein. Li and Wang [4]
studied the local strong solution, Hu-Wang [5] and Suen-Hoff [6] obtained the global
weak solutions for large initial data and small initial data respectively. The low Mach
number limit to the compressible isentropic MHD equations was studied in [7] in the
whole space R3 or the torus T3. For the bounded domain Ω⊂R2, Dou-Jiang-Ju [3] and
Dou-Ju [8] proved the incompressible limit. Fan, Li and Nakamura [9] generalized the
results to three-dimensional case.

Next, let’s review existing results on the Hall-MHD system. For incompressible case,
the results of well-posedness can be referred to Acheritogaray-Degond-Frourelle-Liu [1],
Dumas-Sueur [10] on global weak solutions, Chae-Degond-Liu [11] on the local smooth
solutions. For compressible case, Fan-Alsaedi-Hayat-Nakamura-Zhou [12] studied the
global existence and time decay rate of smooth solutions. The first author [13] established
the zero Mach limit of the system (1.1)–(1.3) on R3.

In this present paper, we mainly establish the global existence of strong solutions
and then show the convergence of the system (1.1)–(1.5) as Mach number tends to zero,
namely we generalize some results in [3, 8, 9] to the Hall-MHD system.

Firstly, there are some scaling transformations on the functions(ρ,u,H) as the follow-
ing:

ρ(x,t)=ρϵ(x,ϵt), u(x,t)=ϵuϵ(x,ϵt), H(x,t)=ϵHϵ(x,ϵt),

where ϵ is the (scaled) Mach number, We usually consider the density variations is small
enough, i.e.,

ρϵ :=1+ϵqϵ.

So we can rewrite the system (1.1)-(1.5) as:

∂tqϵ+uϵ ·∇qϵ+
(1+ϵqϵ)

ϵ
divuϵ =0, (1.6)

ρϵ∂tuϵ+ρϵuϵ ·∇uϵ+
1
ϵ

P′(1+ϵqϵ)∇qϵ+µcurl2uϵ−(λ+2µ)∇divuϵ =curlHϵ×Hϵ, (1.7)


