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Abstract. The large time behaviour for a more general prey-axis system is considered.
The asymptotically uniform boundedness of solutions in a suitable space is derived
to ensure the dissipativity of the system. Based on the dissipativity of the system, the
existence of a global attractor is obtained. The main technique used in this paper is the
LP-L17 estimation method.
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1 Introduction

This paper deals with the following parabolic system

up=Au—V-(uP(u,0)Vo)+Gi(u,0v), (x,t)eQx(0,T),

vy =ANv+Gy(u,0), (x,t)eQx(0,T),

ou v (L.1)
£_$_0, x,t) €00 x (0,T),
u(x,0)=up(x),v(x,0) =0vp(x), xeqQ),

which was introduced by Karevia and Odell [1] to describe a direct motion of the predator
u in response to a variation of the prey v, where Q CR"(n>1) is a bounded domain with
smooth boundary, the predator 1 and the prey v interact in terms of the functions Gy (1,v)
and G, (u,v), and the term —V - (uP(u,v) Vo) reflects the prey-taxis mechanism.
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If P(u,v) =0, then (1.1) is reduced to a predator-prey model which has been widely
studied [2-5]. Under the special case

G1(u,0)=f(v) —ud(v), Go(u,0) =cu®(v) —u(k+Iu),

where f(v) and ®(v) satisfy some hypotheses, Wu, Wang and Shi [2] studied the global
bifurcation and global stability of non-negative constant equilibrium solutions. With dif-
ferent nonlinearity, Du and Hsu [3] considered the positive steady state solutions and the
global stability of non-negative constant equilibrium solutions. When P(u,v) #0, various
prey-taxis models have been studied in recent years to establish global existence, global
boundedness and global stability of solutions [1,6,7]. With the special case P(u,v) = x
and
G1(u,v) =~yuF(v)—uh(u), Go(u,v)=—uF(v)+f(v),

the system (1.1) becomes

ur=Au—N-(xuVo)+yuF(v)—uh(u), (x,t)€eQx(0,T),
vr=Av—uF(v)+f(v), (x,£)eQ1x(0,T), 12
9 9 1.2
£:£:0, x,t) €902 x (0,T),
u(x,0)=up(x), v(x,0)=0v(x), xeQ.

The global classical solutions to (1.2) with global asymptotic behaviour of constant steady
states have been obtained in [6] under the following hypotheses:

(H1) F(v) € C%([0,00)), F(0)=0, F(v) >0in (0,00) and F'(v) >0, F”(v) <0 on [0,00);

(H2) the function h: [0,00) — (0,00) is continuously differentiable and there exist two
constants 6§ >0 and a >0, such that (1) > 6 and /' (u) >« for any u >0;

(H3) the function f:[0,00) — R is continuously differentiable satisfying f(0) =0, and
there exist two constants y,K > 0 such that f(v) < puv for any v >0, f(K) =0 and

f(v) <0 for all v>K. Moreover the ratio % is continuous on (0,00) and lim,_,g %
exists.
It is mentioned that the conditions
YE(K) <0, (1.3)
YE(K)>0 and 2 >D u.F*(K) (1.4)

T aF(o ) F(K)

are crucial for the global asymptotic properties of constant steady states, which plays an
important role in the Lyapunov functional procedure in [6], where (1.,,v.) is the unique
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positive constant steady state of (1.2). On the other hand, as pointed out [6], it is still
unclear whether pattern formation exists in more general cases, e.g., if (H1)-(H3) hold.
Then a natural question is how to determine the large time behaviour of the system (1.2)
in general, i.e., when system (1.2) can admit pattern formation.

The aim of this paper is to determine the asymptotic behaviour for the system (1.2)
without conditions (1.3) and (1.4). Let

X;:{¢6W1'P(Q):¢20inﬂandgg;:OonBQ}, p>1.

The main result is the following theorem.

Theorem 1.1. Let Q C R? and hypothesis (H1)—~(H3) hold. Then (1.2) defines a dynamical
system (S, X) associated with a global attractor A in X.

Remark 1.1. Theorem 1.1 asserts the dissipative property and the existence of a compact
invariant absorbing set of system (1.2) containing all of the steady states of system (1.2)
under the assumptions (H1)-(H3), even if the conditions (1.3) and (1.4) required in [6] do
not hold.

We will give some preliminary remarks in the next section, and then prove the dissi-
pativity of the system (1.2) in Section 3 and the Theorem 1.1 in Section 4.

2 Preliminaries

We start with the global existence of classical solutions of (1.2) without proof. Refer to [6].

Lemma 2.1 ([6]). Let Q CIR? be a smooth bounded domain and the hypotheses (H1)-(H3) hold.
Assume (ug,v0) € [WYP(Q)]? with ug,v9 >0 and p > 2. Then problem (1.2) has a unique global
classical solution (u,v) € C(Q x [0,00))NC> (Qx (0,00)) satisfying

[ € )Ly + o (o) [T ) <€,
where C >0 is a constant independent of t, and in particular 0 <v < Ko where
Ko :=max{||vg||r~,K}.

Next, we introduce some well-known properties of the Neumann heat group. For
r>1, we denote 0Q)

Ap=—A¢p+¢ (2.1)
with

D(A):{q)ewz'r(ﬂ):gz:O on 80}, re(1,0:). (2.2)
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Lemma 2.2 ([8]). Let A be defined as in (2.1) and (2.2). Then the following estimates hold for
all B> 0.
(i) If 1<p<co, then

|APe™ A w]| ey <ct Pe M |wll o), t€(0,T) 2.3)
for any w e LP(Q)), and some v1 > 0.
(i) If 1<p<g<oo, then
e <ct PG Dot te(0,T 2.4
| APe ] 1y <ot FH wia) : 24)
holds for all we L9(QY), and some p > 0.
(iii) If 1 < p < co, then
| APe™ 4% ]|y ) < Cle)t P25 (M o] te(0,T) (2.5)

is valid for all w e W1(Q)), and some > 0.

Lemma 2.3 ([6]). Let Q) be a smooth bounded domain in R". Let 1<p,q<oo satisfy (n—kq)p<nq
for some k>0 and r € (0,p). Then for all w € W (Q)NL'(Q), there exist two constants ¢ and
ca depending only on O,q,k,r and n such that

o]l < Cl| D a0l l|el| £ +Cllw]|

with a € (0,1) fulfilling
1 1 k 1
pZKZ(q—n) +(1—(Jl);
Lemma 2.4 ([9]). Let g,h,y be three positive locally integrable functions on (tg,+o0) such that

y' is locally integrable on (to,+o0), and which satisfies

j]l{<gy—|—h for t>to,
t+r t+r t+r

/ g(s)ds<ay, / h(s)ds<ay, / y(s)ds<as, for t>ty,
t t t

where r,a1,a,a3 are positive constants. Then
y(t+r) < (a—:+a2>exp(a1), Vit > to.
Lemma 2.5 ([10]). Let «,B, be positive with p+~y—1=v>0, 6 =a+v7—1>0, and
u(t) <at* 1+b/ )17 1u(s)ds  for t>0.

Then -
u(t)<at*= 1Y C (bI(B))"t"™,

m=0

w1 L(mv+6)
where C)=1, C,“ = TmTo+8)"
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3 Point dissipativity

In this section we establish the point dissipativity of the system (1.2), which is crucial for
the main result. The key step is to prove the ultimately uniform boundedness of ||| 1(q)
for any p > 1. This work is more difficult, we divide it into several Lemmas.

Denote by W a fixed, but arbitrarily bounded set in X, w;(t) continuous functions
with property lim; o w;(t)=0 (i=1,...,11), C;>0 (i=1,...,5) independent of ¢, and K; >0
(i=1,...,31) independent of the initial data and time ¢.

Using the comparison argument one can easily derive the ultimately uniform bound-
edness of [|v]|;~(q)-

Lemma 3.1 ([6]). Let (u,v) be a solution of (1.2). Then
0<ov(x,t) <Ky+wi(t) in QO x (0, Tmax)- (3.1)

The uniform boundedness of [|u|| 1) was also proved in [6], for the sake of unifor-
mity, we prove it again in the ultimate uniform boundedness form.

Lemma 3.2. Let (u,v) be a solution of (1.2). Then there exists C; >0 such that
(- t) |1 ) < Ka+awa(t) (3.2)
and

t+1
/t (9| ds S Ksaws(t),  VEE (0,+00). (3.3)

Proof. Integrating the equations for u and v in (1.2) gives

jt/Qudx:’y/QuF(v)dx—/Quh(u)dx,

4 (3.4)
a/ﬂvdx:/()f(v)dx—/ﬂulf(v)dx.
Lety(t)= / (u+yv)dx. Observing (H1) and (H3), we then obtain
0
V(1) +0y(1) <190 [ odv+y [ f@)dr<1(0+p) (Ki+wi (1) 3
by using (3.1). Solving the differential inequality gives to
t
y(t)S(Iluollu<m+llvollu<o>)e_9t+7(9+ﬂ)/0 e (K +wi(s))ds
<+ 2E - (luoll o+ 2ol )™ +eos ). (36)
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This implies (3.2) with K, =+ 2. From (H2) we deduce that /(1) > 6+ au, hence

d - 2 r 2

= - <L D) |- .

S5 [0 [ udxd [ u2dx< LIOIP(o( ) i (0) (3.7)
Then (3.3) follows from (3.1), (3.2) and (3.7). O
Lemma 3.3. Let (u,v) be a solution of (1.2). Then there exist positive constants Ky such that

limsup||Vo(-,t)[|12q) < K. (3.8)

t—o0

Proof. Denote by ¢(u,v) =~yuF(v)—uh(u). Integrating the equation of u we get

i/ﬂudx:/g(p(u,v).

Then integration over [7,t] gives

t
[ tuo)rds = luCHlluyey = 0 1oy

with 7> 0 to be determined later. This implies

t
| ([ otwords)ds| < lutHlluxey+luC0la- (39)
Since ¢(u,v) <yuF(v) —au?, we get
/uzdx<—l/ cp(u,v)dx—kz/ uF(v)dx. (3.10)
o) - aJo xJo
Multiplying the equation of v by 2v and 2Av respectively gives
d
a/gv2dx+/ﬂvzdx+2/0|Vv|2dx§(2;4+1)]Q|||szoo(Q) (3.11)
d 2 2 2 2
5 [ IVePdx <P (loll o)) [ s+ 1012 (oli (o). (612)

Therefore,

d o 2 2 2
dt/g(v +|Vo| )dx—l—/Q(v +|Vo|*)dx
SFZ(HUHLw(Q))/QMzder|Q|f2(|\v||Lw(n))+(2ﬂ+1)|Q|||0H2c>o(o)- (3.13)

Integrate (3.13) over [7,t) to get

t
2 2 - 2 —(t— 2
o)1) N0 s e +maxE2(o(s) I [ e @) ([ udx)ds
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+max (f2([[o(s)l| =) + Do) () [O): (3.14)

Inserting (3.9) and (3.10) into the (3.14), we get
1
o)1y <loe Bigeye™"+ - maxP2(o(s) (o) (1Dl oy + 14Dl )

t
+%F3(Hv(s)||Loo(Q))/Te_(t_s)</0udx)ds
+f§12ag<(f2(||v(s)!le(Q))+(2ﬂ+1)||U(S)||Loo(n))|Q|~ (3.15)

If we choose a 7> 0 such that max{w;(s),wz(s)} <1 when s > 7 by Lemmas 3.1 and 3.2,
then

max{[|o(-,) =), [[4( )|l ()} <max{Ka K1} +1, for Vi > 1. (3.16)
Therefore (3.8) follows from (3.15) and (3.16). The proof is complete. O
Lemma 3.4. Let (1,v) be a solution of (1.2). Then there are positive constants Ks such that

limsup|[u(-#)|l;2(0) <Ks,  for Vt€(0,00). (3.17)

t—o0

Proof. Multiplying the equation of u by 2u and integrating in (3, we have

d 2 2
dt/gu dx+2/Q\Vu] dx

§2x/ uVuVZH—Z'y/ P(v)uzdx—Z/ h(u)udx
0 0 0
Se)(/ |Vu\2dx—|—)(£’1/ u2]Vv\2dx—|—2'y/ F(v)uzdx—29/ uzdx—sz/ u3dx  (3.18)
Q O 0 Q 0
by using the Young’s inequality. Apply the Young’ inequality again to get

23
29F(v)u? <au’+ ?FS(U),

we then obtain by taking ¢ = %
d/ uzdx—i—/ |Vu|*dx
dt Ja Q
2 [ .2 2 29° 3
<x /u |Vo| dx-l——z/ F°(v)dx
Q as Jo

2 3
<X [ 13Voldr+ =L 01F (ol (). (319)
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Now we will estimate the item / u?|Vo|*dx. Using the interpolation inequality with
Q
n=2

1 1 1 1
el < 1l 2y el gy = 1l 2y 10202y + 1)

HLZ(Q)
we derive
[ 2190 <l | Vol
<l 2oy IVl 2y + 1l 22 VOl T
<e|| Vul[F2 ) +C(&) [l 2y (1 VOl (0 +1)- (3.20)

Inserting (3.20) into the (3.19) with e= % we easily get

d 2 2 2 4 273 3
5 [ 12dx <CEO IR ) IV ol ) + D+ S5 QP (lolie@). G21)
If we show o
limsup ||Vv|| 0)dx <Ke
t—oo Jt

with K¢ >0 independent of 1,7y and ¢, then (3.17) follows directly from Lemmas 2.4 and
3.2. Taking w= Vv, =2, r =4 in the well-known interpolation inequality

lwllir o <qu||CU||H1 |\WI|m)

we get
[90l144 ) < CIVol2u 0 190122y 1V 0I R0y (190120 + 1801 ). (B22)
t
Now we are in the position to estimate / HAUH qyds. Multiplying the equation of v
t

by v; and integrating over (), we find that

d
< [ |vol2d /2d<2/ 2 4 12)dx,
dt/Q‘ vl*dx+ | Urdx s Q(eru)x

therefore,

[ dx)ds< Y +u*)dx )d 2
/t </Qvt x) s< Vo )lliz )+ /t (/Q(v +u*) x) s. (3.23)

On the other hand, we can deduce from the equation for v that

t+ t+1 5 t+1 5 t+1 5
[ 80lads<C( [ Tolaaydst [ lulfaqds+ [ lolands), (324
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which gives

t+1
limsup t HAUH%Z(Q)dsgI@ (3.25)

t—o0

with some constant K7 > 0, here we have used (3.3), (3.8), (3.23). Henceforth we have

t+1
limsup ||Vv||%4(0)ds <Kg

by combining (3.23) with (3.22) and (3.25). The proof is complete. O

Now we present a differential inequality [11] which is crucial for the ultimately uni-
form boundedness of ||u(-,t)||, with p>1. Consider the inequality

Y () <F(ty), y0)=yo, tc(0,00) (3.26)

with the property y: Rt — R, suppose that:
(H4) There exists a continuous function G(y,Y):IR?> — R such that for 7 sufficiently large,
if t>7and y(s) <Y for every s € [t,t] then there exists T' > T such that

F(ty)<Gy),Y), y(0)=yo, ift>7>7. (3.27)

(H5) The set {z:G(z,z) =0} is not empty and z. =sup{z: G(z,z) =0} < co. Furthermore,
G(M,M) <0 for all M > z,.
(H6) Fory,Y >z, G(y,Y) is increasing in Y and decreasing in y.

Lemma 3.5 ([11]). Assume (3.26), (H4)-(H6). If limsup,_, y(t) <oo, then

limsupy(t) <z..

t—o0

Now we prove the ultimately uniform boundedness of ||u(-,t)[|1r(q) in the following
proposition by using an induction argument with the help of Lemma 3.5.

Proposition 3.1. Let (u,v) be a solution of (1.2). Then there exist Ky independent of t and initial
values such that

limsup ||u(-,t) || 1r () <Ko for all p>1. (3.28)

t—o00

Proof. Obviously (3.28) holds when p € [1,2] by Lemmas 3.2 and 3.4. So, to prove (3.28), it
suffices to show that the ultimately uniform boundedness of ||u/|14(q) with 4> 2 implies
the the ultimately uniform boundedness of ||u|| 2 cy)-

Denote U :=u1. Multiply the equation of u in (1.1) by #*~! and integrate over () to
get

1d 2 (29-1) 2
2th/0u e L /Q|VU| dx
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=x(29—1 uzq_1Vu-Vvdx+’y u2P (v)— uzh (u)dx
q

<X520]1/ ’vu’Zd + ( C] 1)HV sz /uzdx
FF (o) | UPdx- / U2h(u)d.
Q O

Choose ¢ = %, noticing h(u) > 6 for any u >0, we have

2 2
zth/uclx+9/Ud+

SfHVUHLM(Q)/QU dx+'yF(||vHLoo(Q))/Qu dx.

/ IVU[2dx

L I

We then estimate I; and I; by using the inequality

2 2 2 -1 2
[ wax<y{ [ [9UPar+ Ul f+er Ul

. - 1 o 2q—-1 .
(see [11]) with = T Volmy and 11 = S PF (ol respectively to get
2q9—-1 29—
h< 2ot [ IVUPdr R U R )+ 2 P g DI Vol U o
2q 1 X Zq 1 87242F2(H0Hm(o)) >
L <

From this we derive that

/ude+9/ U2dx+

’1—1)/ 2
qut 442 Q\VU\ dx

<2x%a%(29—1 400
<2x°q7°(29—-1)||Vo|| IIUII +C< 4 2q-1

Denote

o211, PR
@1<t>_c< 1 2 el e

@ () =4x" > (29 =D [U 71

Let (p:/ U?dx. Then we get
o)

¢'(t) < —2909(t) +@1(t) +@2 (1) [ V0l 1)

29—1 8V P?F2(||v|| =)
1+ Q2 ) a3,

(3.29)
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Now we deal with the estimate for || VZJH4W(Q). Similar to (2.1) and (2.2), we define oper-
ator
Arg=—-DAp+¢

with 5
D(Al):{q0€W2/‘1<Q):aZIOOHSQ}, g€ (1,00).

Then the operator A; has fractional powers AP, B >0 whose domains of which have the
embedding properties

D(APyco(@) if 25—’; >0 >0.
Consider the abstract integrated version of the equation of v in L7(Q})
t
v(t) :e_Altvo—l—/ e~ M=) H(s)ds, >0 (3.30)
0

with H(s)=—u(s)F(v(s))+ f(v(s))+0v(s).
If we choose r =1 and n =2, then using Lemma 2.2 we have

t
IV0(8)|[=(00) < Cpt~Pe™*![voll (o) +Cﬁ/0 (t=5)Pe "I H(s) | ayds.  (3:31)

By means of the interpolation inequality

= [
==

1 1_g
HuHm(o)zHuHZ%(Q)SHUHZl(Q)HUHi‘Z(Q), 9

—_

N —

with r > g. By choosing r close to g enough so that 48 <1, one can deduce that
1H ()l s () <E([[o(8)[| o)) 14(8) | agery + [f (0 (8) [ o (02) ) +[[0(8) | o ()]
1o

<F([[0()ll= @) IU )11 0 1T () [1F2 ) + I (12 (8) () + 12(8) [ 2]

=3(5) 9" (s) +@a(s). (3.32)
We conclude from (3.32) that

t
IVo(£)]1= () Swlo(t)+cﬁ/0 (t=5) eI [@3(5) 9" (5) +@a(s)]ds

<@s(t) +C5/Ot(t—s)_ﬁe_(s(t_s)cog(s)goﬂ(s)ds. (3.33)

For convenience, we write ®(t)= fot(t—s) ~Be=01=5) 95 (s) @® (s)ds. Substituting (3.33) into
(3.29), we get

/(1) < —2q09(t)+@6(t) +@ (1) D¥ (). (3.34)
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Now, we are in the position to check (H4)-(H6), and then (3.28) follows from Lemma 3.5.
For any fixed initial (19,v9) € W, there exists T > 0 such that @;(s) <Ky (i=2,3,6) if
s> T. Suppose that ®(s) <Y for any s € [7,t], we can choose a T > T to derive

/Or(t—s)_ﬁe_‘s(t_s)mg,(s)(pﬂ(s)ds <1

if t>7; due to the boundedness of ||u[;~() dependent of (uo,v9) (Lemma 2.1). Therefore
we have

d(t) :/OT(t—s)ﬁe‘S(tS)(Dg(s)q)ﬂ(s)ds—i—/:(t—s)ﬂe‘s(ts)wg,(s)(pﬂ(s)ds

t
<1+¥° / (t—s)~Pe0-9ds <14 K1oKin ¥?, (3.35)

T

where K3 = [;”(t—s)Pe=*(=9)ds < 00. Choose r > 251 > 4 close to g enough such that

% —% < %, combing with (3.34), we arrive at 49 <1 and

— 2q9(p(t) —|—K10 —|—K10 (1 —|—K10K11T&)4
—2g0¢(t) +2Kq0+ K2 ¥4, (3.36)
Let
G(9,¥)=—290¢(t) +9Kio+Ki ¥,
then it is easy to see that G(¢,¥) satisfies (H4), (H5) and (H6). Therefore we have

limsup¢(t) <z, (3.37)

t—o00

by Lemma 3.5, where z, denotes the unique positive solution of the equation —2¢0Y +
9K10+K12¥*? = 0. Obviously z, is independent of ¢ and initials (u9,v9), we then have
proved the ultimately uniform boundedness of ||u(-,¢)||,(q) for any p>1. The proof is
complete. O

4 Existence of a global attractor

In this section, using a semigroup argument inspired by [12,13], we prove the global at-
tractor to (1.2) based on the point dissipativity of the system (1.2).

Proof of Theorem 1.1. The global existence result guarantees that (1.2) admits a dynamical
system. We start with the v-component. It follows from (3.30) that

I_nt t o _
lo(t)||lw <||A] "e AltUOHLP(Q)‘i‘Cw/O |AY el S)H(S)HLP(Q)dS
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<Cort” e W [og | +-Car [ (t=8) " e 1 [[u(5) || () Fll0(5) [l 1y s

t
0
t '—o! —v! (f—g
+Cu | (t=s)" e D (F(10(9) () + 10(8) | oy ) s
t

<Cyt" e |vg ||+ Cor [ (E—5) " e™117) (Ki3+cwq(s))ds
0
<Crt?" e ™10y + Kia +ws (), (4.1)
where 0< 9/ <1/2<a’ <1. Therefore

limsupHv(t)Ha/ §K14. (42)

t—o0

Next, we prove the ultimate boundedness of ||u(t)||,. Consider the parabolic equation

W raWg=e(),  reqr>0

% _o x €0, >0, *3)
on

¢(x,0) = ¢o(x), xeq),

where A(t)¢p:=—A¢p+¢ with domain D(A) as in (2.2), and P is Lipschitz continuous in
¢. Rewrite the equation of u in (1.2) as

u(t):eAtuo+/0te’4(ts)q>(s)ds, t>0 (4.4)
with
®(s)=—xVu(s)-Vo(s)—xu(s)Av(s)+u(s)[yF(v(s))—h(u(s))+1].
From (4.4), we derive
Ju(t) e <l A% Aols e+ [ 1A% CIAD(5) 15 s

t
< A% gl +Co [ (E=5) eI s, @5)

i J2

We need to estimate J; and ], for any f € (0,T], where T >0 is to be fixed. Let 0 <a <1.
In the following, we denote by M; the constant which dependents on W C X and T. Then
we have

Ji= 1A% Yuol| (o) < | A e AT ug | o (o) < Crt ™~ e g,
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with 0 <y <a<1.
Since we have the embedding [12]

WP (Q) > D(AM)  for 1< f(s—ﬁﬂ)
with W7 (Q) = {p e WP(Q): a—"’ =0 on 9Q} for 1 5 <5< 1—1—%, we immediately get the
estimate
Ji =A% 4 ug || ey < Cot ™™™ |utg | i () < Mat"' 7%, (4.6)

where0<’yl<f—7+ <a<landr>p.
Now, we estimate ]2 Note that,

1P () [r () XNV uS) | r ) [VO(S) [0y + XM 1(5) [ Lo () BV (8) ] L o)
Hu(s)(vE(o(s)) =h(u(s)) +1)llr ) (47)

where 1+1 =1 4 2/~ » By Lemma 3.1 and Proposition 3.1 we find that
pr 4.9 = P- By p

it
[[u(s)(vE(o(s)) —h(u(s)) +1) () < Kis+ws (). (4.8)
Similar to (4.1), by (3.31) we assert that

1H (o) |y SIIF(0(0) || ooy [[(0) [[ Loy + | f (0(0)) +0(0) [ Lo ()
<F([lo(o) || z=) 1 (@) | Loy + (f[0(0) [ o) + [[0(0) | 2 ())
<Kie+wy(t). (4.9)

In combination with (3.31) and the embedding C!(Q)) < D(AY) for a’ > 3+1, we get
, S
IV0(5) [0y <Cus” e [0l +C | (5—0)” Ve H(0) | gy dor
/ ! S /! !
<gn—« |\00H%+Ca/ (s—o)™" e*"l(sfﬂ)(Klé—i-wﬂ(T))ds
0

<(Kiy+ws(s))(14s1). (4.10)

Furthermore, the embedding D(Af) — W7 (Q) gives
1-8 B
IVu(s) |l r ) < Cllu(s)llp < Cpoll(s) Il o ) 11 (s) ]2 (4.11)

with1<p<r, % < B <a. We then derive

1-8 i
IV u(s) | r ) VO (s) | () <Cpooll($) [l o ) 11 () [ [[VO(8) [ 1)
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/ ! é
<(Kig+wo(s)) (1+s77 ) [[u(s)lla- (4.12)
Now we estimate [|Av(s)) ||, 14 () t0 do so, using of the inequality [14]
|Av(s) Hm/(n) < CyllA10(s)ll 1y (- (4.13)
From (3.30) we deduce that
S
I41905) ey SCpllAre 5aoll o+ [ Are OIS s
) t
<Mt [ A e A ALH(S) | s
<Mys" 14 [ (s =) e ANH(s) |y g o (4.14)

Application of the continuous embedding W' (Q)) < CF(Q) with 0<2A <s < <1 results
in

1ATH (@)1 0y SCAIH (@) st ) < Capu 1 H (@) e ry- (4.15)
Furthermore, a simple calculation gives

IH (o) lcr(ey <llu(@)E(o()llcniay +11f (v(0) +o(0)]cray
<[lu(@)llcrey IF (@@ ller(o) + 1+ )llo(@) [ cr )
<(Kig+wio(0)) 1+ [u()lcr (), (4.16)

where ve C*(Q) forall u<1—2 by Proposition 5.1[12]. Using the embedding D(A!) —
CH(Q)) and the interpolation inequality ||¢||,» <C,s ., ||(p|]1 v ||¢H S with b+ 1</ <<,
we have

()l cr() < Cullu(0) | < Cullu(o) I3y (15, (4.17)
with ¢/ :%. This gives us
IAMH(0) | 1y () < (Koo +en (0) (14 [u(0) [15,) (4.18)
and
41005) 1 0 < Mas™ e 4 M5 [ (5= et (1 u(@) | ) de. (@19

For the estimate of ], one can easily deduce from Lemma 3.1 and Proposition 3.1 that

t
J2 SXCa/O (t=5) """V (5) | (0 | VO(5) | oyl
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t
+Co [ (=) e () 13006 [
t
+Ca/0 (t=s)"%e " Ju(s) (vF (v(s)) = I(u(s) +1] | 1o () ds
t - 8
<Ka1+wia(t) + Mg /0 (F—s) "% (=) (1457 ) | u(s) | 5 ds
t /!
+M7/ (t—s)""e’vl(t’s)ds(s”’l’1
0
+ / (5= Te 4O (14 Ju(o) [4)do ). (4.20)
0
Obviously, there exist positive constants K9 >0 and 7 >0 which satisfy

()12 < Koz 477l 14(5)

Using the following equality

/Ut(t—s)“_1 (s—o)t~lds= m (t—0) "1 =C, p (t—0) b1 (4.21)
we obtain
/Ot(t—s)‘“e‘vl(t_s)s%_lds <Cuy e (4.22)
and

t s , ,
[ (=s) e 10-90ds [ (5= e (1 u(@)| |5, do
0 0

t . , / £
< / e min{} (-0 (1 4 |u(0) |2 )dor / (t—s) "% (s—o)*1ds
0 o

g/ot(t—a)’\“emi“{"l'vi}(t‘T)da—i—/ot(t—a)A“Hu((T)H,xda
<Ko+ [ (=0)* u(0)llpdo (1.23)
Using the following inequality
aPb1<e(a+b)+C,
for positive constants p and g satisfying p+g4 <1, we have
(t—0) = (t—0) (t—0) " <Cp, (t—0) oM. (4.24)

Therefore, we have

! t ! !
I §M8+M9t%—"‘+M10/ (t—5) %" [[u(s) |, ds. (4.25)
0
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For any t,s € (0,T], with suitable choice of 7} and v (e.g., we can choose 7} > 1), there
exist positive constants x; and Mj; with respect to T such that

14817 <xys ™%, Mg+Myt" 4 Mot ™% < My 7174,

Let « =y, we conclude from (4.6) and (4.25) that
t
IIM(f)HaSHA"‘e*Atuon(n)ﬂL/o [A%e™ (94D (s) | (s

t
<[l A% Mollip iy +Ca | (1=5) e 0 |0(5) | 1n(yds
J

2
t ! !
§M11t71”"+M10/ (F—8) %" |[u(c) [|adis
0
<Myt % forany te€ (0,T] (4.26)

by Lemma 2.5 if a+a’ <14]. Take notice that 7' < % — %—l— %, if we choose min{a,a’ } > % + %,
then we get r > %, which is sufficient for a suitable « in (4.26).

Choose T >1 so that w;(t) <1 (i=1,---,11) if t>T. Let T be the initial time, instead of
(4.4), we consider the equation

u(t):e_A(t_T)u(T)+/Tte_A(t_s)<I>(s)ds. (4.27)

In view of (2.3) and (4.26), we have

[[(#)]] SIIA”‘e‘Atu(THIm(Qw/TtIIA"‘e‘A(t‘S)@(s)IILp(mds
<Mpze N 1Cy Tt<t—s>‘“e"’l“‘s>||<I>(s>|!m<mds- (4.28)
Similar to (4.7), we find
19 (5) [ (00) <Kis+we(s) + (Kig+ewa(s)) (1487 [u(s) I+ (M4s"5*18*"55
N /OS(S_U)A1evg<sa)(KZO+w11(a))(1+|\u(a)uz’2)da)
<Kay(1+ u(s) I} +M4€_”1S+/05(S—0)*‘1e‘"5(5“’)

x (Koo +awn1(0) 1+ [u(o)||2,)do,  V¥s>T. (4.29)

Substituting (4.29) into the (4.28), we have the following estimates

t B t B
/(t—s)’“e’vl(t’s)(l—i—||u(s)||;g)ds§K26+/ (t—s) "% 109 ||u(s) || £ ds (4.30)
T T
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and
/t(t_S)—ae—ul(t—s)e—y{sdsS/ (t S) o —m1n{1/1 vy H(E— s)ds
T T

<e—min{v1,v{}%/

T
<(min{vy,vi })*IT(1 —a)e~mintn i} (4.31)

t t—
(t S) « —mm{vlvl} TdS

Exchanging the order of integral yields

t s , ,
/T (t—s)~%e 1 (t=3)ds /O (s—0)* e 167 (Kyg+wir (o)) (1+ |[u(0)]|Z, ) der

S/T</ (t— ) (S ))\ 1ds)e—min{v1,1/{}(f*‘7)(K20+w11(0'))(1+||u(0.)||’13/2)d0'

+/ / (s— U)A_lds> o~ min{v,vi}(t-0)

x (K +wr1 (o ))(1+|yu(a)y|$’2)da. (4.32)

Because of (4.21) we have

/t(t—s)”‘(s—a))‘ldsg/t(t—s)“(s—a))‘1ds§C1_a,A(t—a)A“,
T o

SO
t : /
/ Crgp (t—0) e ™0 (Koo 4wy (o) ) dor < Koy (4.33)
T
and
T . ,
/ Cl_a,/\(t_O_)A—ae—mm{vl,vl}(t—(r) (K20+w11 (0_))(:1(7
0
T
§M14C1_a Ae—min{vl,v{}% / (t_a_)/\—zxe—min{vl,vi}t_T‘Tda_
' 0
<Myse™min{nir 5t (4.34)

by using (4.26). Meanwhile

t, ot ) ,
[ ([ t=9)(s=0)*1ds )emnr)6-0) u () | dor

T
t s / /
<Ciap [ (=0 e M) (o)) do
T

t 3 / —a /
§C1_,X,A/ (t—0) e min{i 5|y (o) Hﬁzda, (4.35)
T
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where we have used x}e~min{vivi}x < p=min{vi,vi}3 for any x>0and A€ (0,1).
Combining these estimates, we have

t
Hu(f)HaSMBfW(H)ﬂL/T(f—S)f”‘e*”(t*S)H‘D(S)Hm(o)ds

. - t . s
§M1667mm{1/1,1/{}(tTT) +K28_|_K29/ (t_s)fzxefmm{vl,v{ tT‘
T

u(s)||zds

with e (%,zx) and ¢ = g, which implies

limsup||u(t) ||« <Kzo (H— (limsup || () Ha)ﬂ>,

t—o0 t—o0

and thus limsup, ., ||u(t)||« <Kz1. Due to the compact embedding D(A%) — W7 (Q)
and D(A{") = WP(Q) for a; =min{a,a’} > J, we assert the existence of the global at-
tractor of (1.2) by [9, Theorem 1.1]. O
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