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Abstract. In this paper, we consider the following nonhomogeneous Schrödinger-
Poisson system {

−∆u+u+ηϕu=u5+λ f (x), x∈R3,
−∆ϕ=u2, x∈R3,

where η ̸=0, λ>0 is a real parameter and f ∈L
6
5 (R3) is a nonzero nonnegative function.

By using the Mountain Pass theorem and variational method, for λ small, we show that
the system with η>0 has at least two positive solutions, the system with η<0 has at
least one positive solution. Our result generalizes and improves some recent results in
the literature.

AMS Subject Classifications: 35B33, 35J20, 35J60

Chinese Library Classifications: O177.91

Key Words: Schrödinger-Poisson system; critical exponent; variational method; positive solu-
tions.

1 Introduction

In this paper, we study the existence and multiplicity of positive solutions for the follow-
ing nonhomogeneous Schrödinger-Poisson system with critical exponent{

−∆u+u+ηϕu=u5+λ f (x), x∈R3,
−∆ϕ=u2, x∈R3,

(1.1)
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where η ̸=0,λ>0 is a real parameter and f ∈L
6
5 (R3) is a nonzero nonnegative function.

It is well known that the Schrödinger-Poisson system stems from quantum mechanics
models and semiconductor theory (see [1–3]) and it has been studied extensively. From a
physical standpoint, Schrödinger-Poisson systems describe systems of identical charged
particles interacting each other if magnetic effects could be ignored and their solutions
are standing waves. For more details about the mathematical and physical background of
Schrödinger-Poisson system, we can refer to the papers [4-7] and the references therein.

Zhao and Zhao [8] studied the following Schrödinger-Poisson system with critical
exponent for the first time{

−∆u+u+ϕu=K(x)|u|4u+µQ(x)|u|q−2u, x∈R3,
−∆ϕ=u2, x∈R3,

(1.2)

where 2<q<6,µ>0 and K,Q∈C(R3,R) satisfies some certain conditions. When 2<q<4
and K,Q are radial functions with some certain conditions, they obtained system (1.2) has
at least a positive radial solution for µ>0 large enough; when q=4, they obtained system
(1.2) possesses a positive solution for µ> 0 large enough; while 4< q< 6 they obtained
system (1.2) has at least a positive solution for all µ > 0. Recently, Lei-Liu-Chu-Suo [9]
considered the following Schrödinger-Poisson system{

−∆u+u+ηϕu=u5+λ f (x)uq−1, x∈R3,
−∆ϕ=u2, x∈R3,

where 1<q<2,η∈R\{0},λ>0 is a real parameter and f ∈L
6

6−q (R3) is a nonzero nonneg-
ative function. Using the variational methods, they obtained that there exists a positive
constant λ∗ such that for all λ∈ (0,λ∗), the system has at least two positive solutions. A
natural question is whether there exist solutions for the critical Schrödinger-Poisson sys-
tem with nonhomogeneous term (that is, the case of q=1 in system (1.2)). Ye [10] studied
the following a class of nonhomogeneous Schrödinger-Poisson system{

−∆u+u+λϕu= f (u)+h(x), x∈R3,
−∆ϕ=u2, x∈R3,

(1.3)

where λ > 0 is a parameter and 0≤ h(x) = h(|x|)∈ L2(R3), f satisfies the following hy-
potheses:
( f1) f ∈C(R,R+), f (0)=0, f (t)≡0 for t<0 and there exist a>0 and q∈ (2,6) such that

f (t)≤ a(1+|t|q−1), ∀t∈R.

( f2) limt→0
f (t)

t =0.
( f3) limt→∞

f (t)
t =+∞.

She proved that system (1.3) has at least two positive solutions with the aid of Ekeland’s
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variational principle, Jeanjean’s monotone method, Pohožaev’s identity and the moun-
tain pass theorem. However, the author did not consider the case of the critical exponent.
Indeed, when the nonlinear term contains the critical exponential term, it is more difficult
to study system (1.3).

The general form of the Schrödinger-Poisson system with critical exponent is as fol-
lows {

−∆u+u+l(x)ϕu=u5+g(x,u), x∈R3,
−∆ϕ= l(x)u2, x∈R3,

(1.4)

where l(x) and g(x,s) satisfy some certain conditions. The system (1.4) has been exten-
sively studied, for examples: [11-24]. Particularly, when g(x,u) is superlinear, Huang
and Rocha [13] studied system (1.4) in case of g(x,u)=µh(x)|u|q−2u with 2≤ q< 6, and
established a positive solution by using the variational methods. Zhang [21] studied the
Schrödinger-Poisson system with a general nonlinearity in the critical growth. [22,23] in-
vestigated the ground state sign-changing solutions for the Schrödinger-Poisson system
with critical growth.

Our paper is mainly inspired by [9, 10]. Up to now, there was no information about
system (1.1). Therefore, in this paper, we will study the existence of multiple solutions of
system (1.1) with η ̸=0 by using the Mountain Pass theorem and variational method.

Our main result can be described as follows.

Theorem 1.1. Assume that η ̸=0 and f ∈L
6
5 (R3), f ≥0, f ̸≡0, then

(i) when η<0, there exists a positive constant Λ0 such that for all λ∈ (0,Λ0), system (1.1) has
at least one positive solution (u∗,ϕu∗) in H1(R3)×D1,2(R3);
(ii) while η>0, there exists a positive constant Λ such that for all λ∈ (0,Λ), system (1.1) has at
least two positive solutions (u∗,ϕu∗) and (u∗∗,ϕu∗∗) in H1(R3)×D1,2(R3).

Remark 1.1. Compared to [10], on the one hand, we consider the critical system; on the
other hand, we also study the negative coefficient of the nonlocal term. Compared to [9],
we study the case of q=1 and also obtain two positive solutions for system (1.1) with η>0.
However, there exists a mistake in the fifth conclusion of Lemma 2.1 in [9], we only can
obtain F(un)=F(un−u)+F(u)+on(1). Here, we correct this flaw and the corresponding
proof. But, for the case of η<0, we could not obtain the second solutions because of the
lack of compactness for the nonlocal term ϕuu in H1(R3).

This paper is organized as follows. In Section 2, we present some notations and prove
some useful preliminary lemmas which pave the way for getting two positive solutions.
Then we give the proof of Theorem 1.1.

2 Proof of Theorem 1.1

Throughout this paper, we make use of the following notations:
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• |u|s =
(∫

R3 |u|s dx
) 1

s is the usual Lebesgue space Ls(R3) norm.

• The norm of H1(R3) is denoted by

∥u∥=
(∫

R3

(
|∇u|2+u2)dx

) 1
2

.

H−1 is the dual space of H1.

• D1,2(R3)={u∈L2∗(R3) : |∇u|∈L2(R3)} with the inner product∫
R3
(∇u,∇v)dx.

• Br (respectively, ∂Br) is the closed ball (respectively, the sphere) of center zero and
radius r, i.e.,

Br ={u∈H1(R3) :∥u∥≤ r}, ∂Br ={u∈H1(R3) :∥u∥= r}.

• C,Ci (i = 1,2,.. .) denote various positive constants, which may vary from line to
line.

• For each p∈ [2,6), by the Sobolev constants, we denote

S= inf
u∈D1,2(R3)\{0}

∫
R3
|∇u|2dx

|u|26
; Sp := inf

u∈H1(R3)\{0}

∥u∥2

|u|2p
.

As we all known that system (1.1) can be reduced to a nonlinear Schrödinger equation
with nonlocal term. Indeed, the Lax-Milgram theorem implies that for any u∈ H1(R3),
there exists a unique ϕu ∈D1,2(R3) such that

−∆ϕu =u2.

We substitute ϕu to the first equation of system (1.1), then system (1.1) can be transformed
into the following equation

−∆u+u+ηϕuu=u5+λ f (x), x∈ R3. (2.1)

In order to obtain positive solutions, the Euler functional of Eq. (2.1) can be defined by I:
H1(R3)→R as the following

I(u)=
1
2
∥u∥2+

1
4

η
∫

R3
ϕu(u+)2dx− 1

6

∫
R3
(u+)6dx−λ

∫
R3

f (x)udx,
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where u+=max{u,0}. We can deduce that the functional I is of class C1 and its critical
points are weak solutions of Eq. (2.1). Moreover, we can obtain that

⟨I′(u),φ⟩=
∫

R3
(∇u·∇φ+uφ)dx+η

∫
R3

ϕuu+φdx−
∫

R3
(u+)5φdx−λ

∫
R3

f (x)φdx

for any φ∈H1(R3). According to [8] or [13], we have the following conclusions.

Lemma 2.1. For every u∈H1(R3), there exists a unique ϕu ∈D1,2(R3) solution of

−∆ϕ=u2

and the following results hold

(1) ∥ϕu∥2=
∫

R3
ϕuu2dx,

(2) ϕu ≥0, moreover ϕu >0 when u ̸=0,

(3)
∫

R3
ϕuu2dx=

∫
R3
|∇ϕu|2dx≤C∥u∥4,

(4) F : H1(R3)→R is well defined with F(u)=
∫

R3
ϕuu2dx, assume that un⇀u in H1(R3), then

ϕun ⇀ϕu in H1(R3),
(5) F is C1 and

⟨F′(u),v⟩=4
∫

R3
ϕuuvdx, ∀v∈H1(R3).

Lemma 2.2. There exist Λ0,ρ>0 such that for each λ∈ (0,Λ0), then it holds

d := inf
u∈Bρ(0)

I(u)<0 and I|∂Bρ(0)>0. (2.2)

Proof. When η>0, by the Sobolev and Hölder inequalities, we obtain

I(u)=
1
2
∥u∥2+

1
4

η
∫

R3
ϕu(u+)2dx− 1

6

∫
R3
(u+)6dx−λ

∫
R3

f (x)udx

≥1
2
∥u∥2− 1

6

∫
R3
(u+)6dx−λ

∫
R3

f (x)udx

≥1
2
∥u∥2− 1

6S3
6
∥u∥6−λS− 1

2
6 | f | 6

5
∥u∥

=∥u∥
(

1
2
∥u∥− 1

6S3
6
∥u∥5−λS− 1

2
6 | f | 6

5

)
. (2.3)

Set g(t)= 1
2 t− 1

6S3
6
t5, we can easily calculate that there exists a positive constant ρ1=( 3

5 S3
6)

1
4

such that maxt>0 g(t)= g(ρ1)>0. Let

λ∗=
S

1
2
6

2| f | 6
5

g(ρ1),
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we have

I|∥u∥=ρ1
≥ g(ρ1)

2
ρ1=α>0 for any λ∈ (0,λ∗).

When η<0, by the Sobolev and Hölder inequalities, we have

I(u)=
1
2
∥u∥2+

1
4

η
∫

R3
ϕu(u+)2dx− 1

6

∫
R3
(u+)6dx−λ

∫
R3

f (x)udx

=
1
2
∥u∥2−−η

4

∫
R3

ϕu(u+)2dx− 1
6

∫
R3
(u+)6dx−λ

∫
R3

f (x)udx

≥ 1
2
∥u∥2−C∥u∥4− 1

6S3
6
∥u∥6−λS− 1

2
6 | f | 6

5
∥u∥

=∥u∥
(

1
2
∥u∥−C∥u∥3− 1

6S3
6
∥u∥5−λS− 1

2
6 | f | 6

5

)
.

Set g(t)= 1
2 t−Ct3− 1

6S3
6
t5, we see that there exists a constant ρ2>0 such that maxt>0 g(t)=

g(ρ2)>0. Let

λ∗∗=
S

1
2
6

2| f | 6
5

g(ρ2),

we have

I|∥u∥=ρ2
≥ g(ρ2)

2
ρ2, for any λ∈ (0,λ∗∗).

Thus, set Λ0 = min{λ∗,λ∗∗},ρ = min{ρ1,ρ2}, then it follows that there exists a positive
constant α=min

{
g(ρ1)

2 ρ1, g(ρ2)
2 ρ2

}
such that I(u)≥α for all ∥u∥=ρ.

Moreover, by (2.3), we know that d= infu∈Bρ(0) I(u) is well defined. Furthermore, for
any u∈H1(R3), one has

lim
t→0+

I(tu)
t

=−λ
∫

R3
f (x)udx.

Thus, there exists û>0 such that ∥û∥<ρ and I(û)<0. Consequently, d=infu∈Bρ(0) I(u)<0.
The proof is complete.

Theorem 2.1. Suppose 0<λ<Λ0 (Λ0 is defined in Lemma 2.2). Then system (1.1) has a positive
solution (u∗,ϕu∗)∈H1(R3)×D1,2(R3) satisfying I(u∗)<0.

Proof. By Lemma 2.2, there exist α> 0,ρ> 0 such that when λ∈ (0,Λ0), for any ∥u∥= ρ,
we have I(u)≥ α > 0 and d = infu∈Bρ(0) I(u)< 0. There exists a minimization sequence
{un} ⊂ Bρ(0). Since {un} ⊂ Bρ(0), it’s easy to see that {un} is bounded in H1(R3). So
there exist a subsequence (still denoted by itself) and u∗∈H1(R3) such that

un ⇀u∗ in H1(R3),

un ⇀u∗ in Lq
loc(R

3) (2≤q≤6),

un(x)→u∗(x) a.e. in R3.

(2.4)
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Set wn =un−u∗, so wn ⇀0 in H1(R3). The Brézis-Lieb Lemma ([25] or [26]) implies that
∥un∥2=∥wn∥2+∥u∗∥2+on(1),∫

R3
(u+

n )
6dx=

∫
R3
(w+

n )
6dx+

∫
R3
(u+

∗ )
6dx+on(1),∫

R3
ϕun(u

+
n )

2dx=
∫

R3
ϕwn(w

+
n )

2dx+
∫

R3
ϕu∗(u

+
∗ )

2dx+on(1).

(2.5)

Since un ⇀u∗ in L6(R3) and f ∈L
6
5 (R3), we have∫

R3
f (x)undx=

∫
R3

f (x)u∗dx+on(1). (2.6)

By (2.2), for an appropriate constant ρ, we can deduce that

1
2
∥un∥2+

η

4

∫
R3

ϕun(u
+
n )

2dx− 1
6

∫
R3
(u+

n )
6dx≥0, for un ∈Bρ(0). (2.7)

If u∗=0, then wn =un, which follows that wn ∈Bρ(0). If u∗ ̸=0, we also get wn ∈Bρ(0) for
n large sufficiently. From (2.7), one has

1
2
∥wn∥2+

η

4

∫
R3

ϕwn(w
+
n )

2dx− 1
6

∫
R3
(w+

n )
6dx≥0. (2.8)

Therefore, by Lemma 2.1, it follows from (2.4)-(2.6) and (2.8) that

d=I(un)+on(1)= I(u∗)+
1
2
∥wn∥2− 1

6

∫
R3
(w+

n )
6dx

+
η

4

∫
R3

ϕwn(w
+
n )

2dx+on(1)≥ I(u∗)+on(1) (2.9)

as n→∞. Since Bρ(0) is closed and convex, thus u∗∈Bρ(0), we obtain d≤ I(u∗). Hence,
combining with (2.9), one has I(u∗)=d<0 and u∗ ̸≡0. It follows that u∗ is a local minimizer
of I. Since the functional I is of class C1, one has u∗ is a critical point of I, that is, u∗ is a
nonzero solution of Eq. (2.1). Thus, one has ⟨I′(u∗),φ⟩=0 for any φ∈H1(R3). Particularly,
choosing φ=u−

∗ =min{u∗,0}, we have∫
R3
(∇u∗ ·∇u−

∗ +u∗u−
∗ )dx+η

∫
R3

ϕu∗u+
∗ u−

∗ dx−
∫

R3
(u+

∗ )
5u−

∗ dx−λ
∫

R3
f (x)u−

∗ dx=0,

that is,
∥u−

∗ ∥2−λ
∫

R3
f (x)u−

∗ dx=0

which implies that u−
∗ ≡ 0. So u∗ is a nonzero and nonnegative solution of Eq. (2.1).

Consequently, by the strong maximum principle, we get u∗>0. So u∗ is a positive solution
of Eq. (2.1) with I(u∗)<0. Therefore, we can conclude that (u∗,ϕu∗) is a positive solution
of system (1.1). This completes the proof of Theorem 2.1.
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Lemma 2.3. Assume that η > 0, then the functional I satisfies the (PS)c condition provided

c< 1
3 S

3
2 −Dλ2, where D= 9

16 (| f | 6
5
S− 1

2
6 )2.

Proof. Let {un}⊂H1(R3) be a (PS)c sequence of I, that is,

I(un)→ c, I′(un)→0, as n→∞. (2.10)

We claim that {un} is bounded in H1(R3). For n large enough and combining with (2.10),
one gets that

c+1+o(∥un∥)≥ I(un)−
1
4
⟨I′(un),un⟩=

1
4
∥un∥2+

1
12

∫
R3
(u+

n )
6dx− 3

4
λ
∫

R3
f (x)undx

≥ 1
4
∥un∥2− 3

4
λS− 1

2
6 | f | 6

5
∥un∥,

which implies that {un} is bounded in H1(R3). Going if necessary to a subsequence, still
denoted by {un} and there exists v∈H1(R3) such that un⇀v weakly in H1(R3) as n→∞.
Set wn = un−v, similar to Theorem 2.1, one has (2.5) holds for v. If ∥wn∥2 → 0, then the
conclusion holds. Otherwise, there exists a subsequence (still denoted by itself) such that
limn→∞∥wn∥2= l>0. From (2.10), for any φ∈H1(R3), we have ⟨I′(un),φ⟩→0. By Lemma
2.1 and (2.6), as n→∞, it follows that∫

R3
(∇v·∇φ+vφ)dx+η

∫
R3

ϕv(x)v+φdx−
∫

R3
(v+)5

φdx−λ
∫

R3
f (x)φdx=0. (2.11)

Taking the test function φ=v in (2.11), then it holds that

∥v∥2+η
∫

R3
ϕv(v+)

2dx−
∫

R3
(v+)6dx−λ

∫
R3

f (x)vdx=0. (2.12)

From (2.10), we have ⟨I′(un),un⟩→0. By Lemma 2.1, (2.5) and (2.6), we obtain

on(1)=∥v∥2+η
∫

R3
ϕv(v+)

2dx+η
∫

R3
ϕwn(w

+
n )

2dx−
∫

R3
(v+)6dx

+∥wn∥2−
∫

R3
(w+

n )
6dx−λ

∫
R3

f (x)vdx. (2.13)

It follows from (2.12) and (2.13) that

∥wn∥2+η
∫

R3
ϕwn(w

+
n )

2dx−
∫

R3
(w+

n )
6dx= on(1). (2.14)

By the Sobolev inequality, since η>0, we have

|w+
n |26≤|wn|26≤S−1

∫
R3
|∇wn|2dx≤S−1∥wn∥2.

Consequently, we can obtain l≥S
3
2 .
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On the one hand, by (2.12), the Hölder inequality, Young inequality and Sobolev in-
equality, it holds that

I(v)=
1
2
∥v∥2+

1
4

η
∫

R3
ϕv(v+)2dx− 1

6

∫
R3
(v+)6dx−λ

∫
R3

f (x)vdx

=
1
4
∥v∥2+

1
12

∫
R3
(v+)6dx− 3

4
λ
∫

R3
f (x)vdx

≥1
4
∥v∥2− 3

4
λS− 1

2
6 | f | 6

5
∥v∥

≥1
4
∥v∥2−

[
1
4
∥v∥2+

9
16

(
λ| f | 6

5
S− 1

2
6

)2
]

≥1
4
∥v∥2− 1

4
∥v∥2− 9

16

(
λ| f | 6

5
S− 1

2
6

)2

=−Dλ2, (2.15)

where D= 9
16 | f |26

5
S−1

6 .

On the other hand, when η>0, it follows from (2.6),(2.10) and (2.14) that

I(v)= I(un)−
1
2
∥wn∥2+

1
6

∫
R3
(w+

n )
6dx− η

4

∫
R3

ϕwn(w
+
n )

2dx+on(1)

≤ I(un)−
1
2
∥wn∥2+

1
6

∫
R3
(w+

n )
6dx− η

6

∫
R3

ϕwn(w
+
n )

2dx+on(1)

= I(un)−
1
3
∥wn∥2+on(1)

= c− 1
3

l+on(1)

< c− 1
3

S
3
2

<−Dλ2,

which contradicts (2.15). Therefore l=0. The proof is complete.

We know that the extremal function

U(x)=
(3ε2)

1
4

(ε2+|x|2) 1
2

, x∈R3

solves
−∆u=u5 in R3\{0}

and |∇U|22 = |U|66 = S
3
2 . We choose a function ζ ∈C∞

0 (R3) such that 0≤ ζ(x)≤ 1 in R3.
ζ(x)=1 near x=0 and it is radially symmetric. We define

uε(x)= ζ(x)U(x).
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Besides, since (u∗,ϕu∗) is a positive solution of system (1.1), by a standard method, we
can obtain that there exist m,M>0 such that m≤u∗≤M for each x∈suppζ.

Lemma 2.4. Assume that η > 0 and f ∈ L
6
5 (R3), f ≥ 0, f ̸≡ 0, then there exist Λ1 > 0 and uε ∈

H1(R3) such that

sup
t≥0

I(u∗+tuε)<
1
3

S
3
2 −Dλ2, for all λ∈ (0,Λ1).

Proof. From [27], one has

|uε|66= |U|66+O(ε3)=S
3
2 +O(ε3), ∥uε∥2= |∇U|22+O(ε)=S

3
2 +O(ε), (2.16)

|uε|pp =


O(ε

p
2 ), 1≤ p<3,

O(ε
p
2 |lnε|), p=3,

O(ε3− p
2 ), p>3.

(2.17)

It is obvious that the following inequality

(a+b)6≥ a6+b6+6a5b+6ab5

holds for each a,b≥ 0. Since u∗ is a positive solution of Eq. (2.1) with Iλ(u∗)< 0, by the
above inequality, for all t≥0 we have

I(u∗+tuε)=I(u∗)+
1
2

t2∥uε∥2+t
∫

R3

[
∇u∗ ·∇uε+u∗uε+ηϕu∗u∗uε−u5

∗uε−λ f (x)uε

]
dx

+
1
4

η
∫

R3

[
ϕu∗+tuε(u∗+tuε)

2−ϕu∗u2
∗−4tϕu∗u∗uε

]
dx

− 1
6

∫
R3
[(u∗+tuε)

6−u6
∗−6tu5

∗uε]dx

≤1
2

t2∥uε∥2− 1
6

t6
∫

R3
u6

ε dx−t5
∫

R3
u∗u5

ε dx+gε(t)

≤1
2

t2∥uε∥2− 1
6

t6
∫

R3
u6

ε dx−mt5
∫

R3
u5

ε dx+gε(t), (2.18)

where
gε(t)=

1
4

η
∫

R3

[
ϕu∗+tuε(u∗+tuε)

2−ϕu∗u2
∗−4tϕu∗u∗uε

]
dx.

According to [9], we can get that

gε(t)≤Ct2ε+Ct3ε
3
2 +Ct4ε2.

Set
hε(t)=

1
2

t2∥uε∥2− 1
6

t6
∫

R3
u6

ε dx−t5m
∫

R3
u5

ε dx+Ct2ε+Ct3ε
3
2 +Ct4ε2.
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Since limt→+∞ hε(t)=−∞ and hε(0)=0, there exist t1,t2>0 such that

0< t1≤ tε ≤ t2<∞ (2.19)

and
hε(tε)=sup

t≥0
hε(t), h′ε(t)|t=tε =0.

By (2.17), one has ∫
R3

u5
ε dx=O(ε

1
2 ).

Consequently, it follows from (2.16) and (2.19) that

sup
t≥0

hε(t)≤sup
t≥0

{
1
2

t2S
3
2 − 1

6
t6S

3
2

}
+C1ε−C2ε

1
2 ≤ 1

3
S

3
2 +C1ε−C2ε

1
2 , (2.20)

where C1,C2>0 (independent of ε,λ). Let ε=λ2, 0<λ< C2
C1+D , then we have that

C1ε−C2ε
1
2 =C1λ2−C2λ=λ2(C1−C2λ−1)<−Dλ2.

Consequently, combining with (2.20), one has

sup
t≥0

I(u∗+tuε)≤sup
t≥0

hε(t)<
1
3

S
3
2 −Dλ2.

This completes the proof of Lemma 2.4.

Theorem 2.2. Assume that η > 0 and f ∈ L
6
5 (R3), f ≥ 0, f ̸≡ 0, then system (1.1) has another

positive solution (u∗∗,ϕu∗∗) with I(u∗∗)>0.

Proof. Let Λ=min{Λ0,Λ1,( S
2
3

3D )
1
2 }. By Lemma 2.4, we can choose a sufficiently large T0>0

such that I(u∗+T0uε)<0, with the fact that I(u∗)<0. Then, applying the Mountain-pass
Lemma (see [28]), we obtain that there exists a sequence {un}⊂H1(R3) such that

I(un)→ c>0 and I′(un)→0,

where
c= inf

γ∈Γ
max
t∈[0,1]

I(γ(t))

and
Γ={γ∈C([0,1],H1(R3)) | γ(0)=u∗,γ(1)=u∗+T0uε}.

By Lemma 2.3, there exists a convergent subsequence {un} (still denoted by {un}) and
u∗∗∈H1(R3) such that un→u∗∗ in H1(R3), thus u∗∗ is a solution of Eq. (2.1) with I(u∗∗)>
0. Similar to u∗, we can also get u∗∗ ≥ 0 and u∗∗ ̸≡ 0. By using the strong maximum
principle, we have u∗∗ > 0 in R3. Thus, (u∗∗,ϕu∗∗) is a positive solution of system (1.1).
The proof of Theorem 2.2 is completed.
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