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Abstract. This paper is concerned with the well-posedness, uniform asymptotic sta-
bility and dynamics for a semilinear thermoelastic system with time-varying delay
boundary feedback and nonlinear weight, which can be used to describe the physical
procedure of meridian retraction and release therapy. The perturbation theory of linear
operators by Kato is used to deal with the invalidity of Lumper-Phillips theorem on
non-autonomous PDEs operator, the multiplier approach and quasi-stability method
lead to the stability and dynamics for our semilinear problem, which are also true for
linear thermoelastic system without weight.
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1 Introduction

The delay and memory influence the stability and dynamics for evolutionary differential
equations, which come from physics, biology, medicine, material, artificial intelligence
and applied science/engineer, such as the transmission problem of hyperbolic equations.
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In the traditional Chinese medicine, there exists a physical therapy procedure which
is called as meridian retraction and release therapy. The principle of this therapy can
be seen as an abstract and simplified mathematical model influenced by delay, which
is consisted by a coupled system via wave propagation and heat transportation with
time-varying delay boundary feedback and nonlinear weight as the following semilinear
thermoelastic system

(autt—duxx—k,b’@x—i—hl(u) =0 in (0,L) x (0,00),

b0y —10xx+ Puixi+h2(0) =0, in (0,L) x (0,00),
uy(0,£)=u(L,t)=6(0,t) =0, t>0, (1.1)
Ox(L,t)+ki(£)0(L,t)+ko(t)0(L,t—7(t)) =0, t>0,

u(x,0)=up(x), ut(x,0)=ui(x), 6(x,0)="00(x), t>0,
O(L,t—7(0))=fo(L,t—1(0)), in (0,L) % (0,7(0)),

where (ug,u1,6p, fo) belongs to some appropriate Sobolev space, u(t,x) is the displace-
ment of wave along meridians, 6 denotes the heat flow which obeys the Fourier law, 7;(-)
(i=1,2) are the semilinear external forces caused by the retraction and release therapy
technique on the boundary point x= L. Since the stability and dynamics are important in
curative effect from the view of theory, the discussion of problem (1.1) is our objective in
this paper.

When the semilinear terms hi(u) and hy(6) equal to 0, the weights kq(t) and ka(t)
reduce to constants, the system (1.1) is degraded into the problem in [1]. Especially, if the
time-varying delay 7(t) becomes constant, (1.1) reduces to the problem in [2].

As our best acknowledge, the research on hyperbolic equation with delay has been
investigated in fruitful literatures, for instance [3-13]. The thermoelastic systems con-
tain three types according to the different damping, which are composed by wave equa-
tion and heat flow. The well-posedness and stability for classical thermoelastic system
have been studied in last thirty years, which can be referred in monographs as Jiang and
Racke [14], Liu and Zheng [15]. The controllability and stability for thermoelastic sys-
tem can be seen in [16,17] and some related literatures therein. Originated from the idea
in Nicaise, Pignotti and Valein [8], Mustafa [1,2] considered the thermoelastic systems
with boundary feedbacks which contain constant, time-varying and distributed delays,
and derived the stability of energy functional. Thereafter, Mustafa and his collaborator
Kafini, Messaoudi in [18-20] investigated the Timoshenko-type system of thermoelastic-
ity with delays and showed the energy decay. Based on the above related literatures, the
global well-posedness, stability and dynamics for semilinear thermoelastic system with
time-varying delay and nonlinear weight are our objective in this presented paper, which
contains the following results and features.

(1) The problem (1.1) is using to describe the transportation in medicine here, the global
well-posedness has been achieved by semigroup theory in [21] together with the
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perturbation of linear operators by Kato in [19]. By virtue of the Dafermos transfor-
mation, (1.1) can be written as an equivalent abstract form (2.25), the difficulty here
is the operator .A(t) is non-autonomous, which leads to the invalidity of Lumper-
Phillips Theorem as in [15].

By introducing the perturbation theory of non-autonomous linear operator as in
Theorem 2.1 from Kato [19], we can derive the desired well-posedness for (1.1)
via verification Theorem 2.1 of perturbed operator A(t) in Subsection 2.5, which
presents a strict proof for existence of global weak solution. The procedure in Sub-
section 2.5 also gives strict formal analysis for the linear case of problem (1.1) with-
out weight in Mustafa [1].

Using multiplier technique for energy functional of (1.1), the quasi-stability and
uniform asymptotic stability of the gradient system for (1.1) have been attained.
From the quasi-stability method introduced by Chueshov and Lasiecka [22, 23],
Chueshov [24], the finite dimensional global and exponential attractors A and A"
have been shown respectively, here A is consisted by the unstable manifold M*(\)
with the set of stationary points N. Our results of stability and dynamics are the
generation of [1] and [2].

Since the balance between nonlinear weights k; () and k»(t) in the boundary feed-
back is crucial for the stability of gradient system, the hypotheses (H1) and (H2)
guarantee the asymptotic stability of gradient system, which are sufficient condi-
tions. Otherwise, the instability similar as in Nicaise and Pignotti [7] can be ob-
tained or not, this is still unknown.

The rest of this article is arranged as follows: In Section 2, we present some prelimi-
naries and global well-posedness to (1.1). The stability and dynamics for gradient system
have been shown in Section 3.

2 Global well-posedness

2.1

Some useful lemmas and remarks

Consider the following Cauchy problem

du
a ~AWu 2.1)
u(0) = U.

Then the global well-posedness of problem (2.1) is derived by the perturbation theory of
linear operator from Kato [25] as following theorem.
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Theorem 2.1 ([25]). Assume that

(1) Y=D(A(0)) is a dense subset of H.

(2) D(A(t)) is independent on time t, D(A(t)) =D(A(0)) for all t >0.

(3) A(t) generates a strongly continuous semigroup on H for all t € [0,T], and the family A=

{A(t) |t €[0,T]} is stable with stability constants C and m independent on t, i.e., the semigroup
St(s))s>0 generated by A(t) which satisfies

156 (s)Ul[3 < Ce™ [ U],

forall UeH and s >0.
(4) A¢(t) belongs to LS ([0,T),B(Y,H)), which is the space of equivalent classes of essentially
bounded, strongly measurable functions form [0,T] into the set B(Y,H) of bounded linear opera-
tors from Y into H.

Then, problem (2.1) possesses a unique solution U € C([0,T],Y)NC([0,T],H) for any initial
datainY.

Next, we will present some remarks for the preparation of discussion in sequel.

Remark 2.1. Since problem (1.1) is defined in one dimension, although the boundary con-
tains Neumann case, the Poincaré inequality still holds, this is important in the process
of multiplier approach, see [26].

Remark 2.2. The estimate of 9 satisfies
%GZ(L,t) / fdx) / 62dx. 2.2)

2.2 The abstract theory of non-autonomous hyperbolic-type evolutionary equa-
tions

This section is to present local existence of mild solution for preparation, which can be
found in [27,28] and [21].

Denote A(t)=—A(t), let Z as a abstract Banach space, consider the Cauchy problem
for non-autonomous hyperbolic-type evolutionary equations as

du

 TABU=£U), (2.3)
U(t)=U.€Z,

where the operator A(t) satisfies

(i) {A(t)} is non-negative stable generator of Co-semigroup in Z with stable constants
M and w, where the stability is defined provided that there exist constant M > 1
and stable parameter w such that

(w,+00) Cp(A(t)),  telr,T] (2.4)
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and
k

[TA+A)

=1

<MA-w)*,  A>w (2.5)
L(Z)
fort<t)<tp <---<H <Twithk=1,2,---, p(-) denotes the resolvent set.

(ii) Let Y be a Banach space satisfies Y < Z and ) is dense in Z. Then the domain
D(A(t)) =Y, where ) is independent on the choice of ¢.

(iii) A(t)€Lip,([t,4);L(Y,Z)) or 0:A(t) € LY ([T,+0);L(Y,Z)), more details can be
seen in [27].

In addition, the nonlinear term f(-,-):R x Z — Z satisfies that for all R >0, there exists
C=C(R) >0 such that

{Hf(t,U)—f(t,V)HzSC(R)HU—VIIz, 26

If(U)]|z <C(R).

Theorem 2.1 ([21,28]). Assume the hypotheses (i)—(iii) hold. Then there exists a unique
linear evolutionary process S(t,s) with T <s <t in Z satisfies

(a) S:[t,00) = L(Z) is strong continuous and S(s,s) = Id.
(b) S(t,5)S(s,r)=S(t,r) forall r <s<t.

(c) S(t,s)YCYand S:[1,00) = L(Y).

(d) dSc(i;,s) =—A(t)S(t,s) holds in the strong topology of L(Y, Z).

(e) dscgi’s) =S(t,s)A(s), which is strong continuous from [7,00) to L(), Z).

() 1Slloo,z :=5UPy g r,00) 1S (£:5) ] 2) < Me ).

Definition 2.1. The function U:[t,T+7o|— Z is a mild solution for problem (2.3) for appropriate
Ty provided that U € C([1,T+ 1], 2Z) satisfying

U(f) =S(t,T)ue+ / 'S () f(s,U(s))ds. 2.7)

Theorem 2.2 (Local existence of mild solution-See [27]). Assume the hypotheses (i)—(iii)
hold, the nonlinear term f satisfies (2.6). Then for arbitrary U, € Bz (0,r), the abstract problem
(2.3) possesses a unique mild solution U(-;T,Uy): [T, T+To]| — Z which is continuously dependent
on the initial data for appropriate 19> 0.
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2.3 Assumptions

For the well-posedness and stability, the forcing assumptions on k (f) and k() are stated
as follows.

(H1): The function ki (t) : Ry — (0,00) is non-increasing and belongs to C!(R. ), which
satisfies

‘kll(t) ‘ <M, (2.8)

for all £ >0 and some constant M; > 0.
(H2): The function k»(t):R; — R is a C' (R )-class function such that

ko (1) < aky (1) (2.9)
|k (8)| < Mk (t) (2.10)

hold for some 0 <& < % and M, >0.
(H3): For h;(-) € C3(Q)) with i =1,2, there exist constants C;, >0 such that

W (s)|<Cy,(1+]|s]),  forallseR, (2.11)
which implies that, for some C;,, >0,
|hi(s1) —hi(s2)| <Cp. (1+]s1*+s2]*)|s1—s2|,  forallsy, s €R. (2.12)
In addition, assume that there exist p; >0, £o= min{ 4 4,5} >0, such that

hi(s)s>—LloAs*—py, and H;(s) > _TS —On,s forallseR (2.13)

and
lf?j?ofh’( s)>—LoA (2.14)
with H;(s fo o)do hold, where A is the constant in the Poincaré inequality for our

one d1mens10nal problem
(H4): Moreover, similar as in [6,8,11], we assume that

T(t) eW>™([0,T]), VYT>0 (2.15)
0<t<T(t)<T, 1T'(t)] <I<1 (2.16)
[T (1)| <I (2.17)

for some positive parameters To, T1, d and all £ >0.
,B K
2dA 4
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24 The equivalent system

Originated from Dafermos [29], and Nicaise and Pignotti [11], we introduce the Dafermos
transformation

z(p,t) =0(L,t—pt(t)) (2.18)
for (p,t) €(0,1) x (0,00), then the problem (1.1) is equivalent to
autt—duxx—l—ﬁ9x+h1(u): , in (0,L) x (0,00),
b0y — 0y + Pur+hy(0) =0, in (0,L) x (0,00),
T(t)ze(p,t) +(1=7"(t)p)z (0,t) =
uy(0,£)=u(L,t)=0(0,t) =0, t>0, (2.19)
0x(L,t) +k1(t)z(0,8) +ka(t)z(1,8) = >0,
u(x,0)=uo(x), ut(x,0) =uy(x), G(X,O):Go(x), t>0,
(L, t—7(0)) = fo(Lt—7(0)), in (0,1) x (0,7(0))

for z(0,t) =0(L,t) and z(1,t) =0(L,t —(t)).

2.5 Global well-posedness

In this part, the existence and uniqueness of global solution will be shown by using Kato’s
operator perturbed theory and semigroup theory.
The phase space H is Hilbert space, which is defined

H =V xL*(0,L) x L*(0,L) x L*((0,1) x R) (2.20)
with

={weH'(0,L)|w(L) =0}, (2.21)
Vo={we H'(0,L)|w(0)=0}, (2.22)
={we H%(0,L)|w,(0) =w(L) =0}, (2.23)

and inner product of H is equipped with

L _ 1

(U, V)y = /0 (dutyity +avo+b60)dx+&(£)T(t) /O 2(0,)2(p,1)dp (2.24)

for U= (u,0,0,z)T and V = (

i1,0,0,Z) in H.
Denoting v=1u; and U = (u,

z
0,0, )T, then the problem can be rewritten as

du
{th(t)llH(u,G), 225
U(0) = Uy = (uo,u1,60,f0),
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where H(-,-) is defined as

0
—h1(u)
H(u,0) —hy(8)
0
and the operator A(t):D(A) —H as
v
gUxx égx
a a
Au=| %o _B ,
( ) bexx bvx
1-7(p
@) e

the domain of operator \A(t) is defined by

D(A(t)={(1,v,0,2)T € V3 x V; x (H*(0,L)NV,) x L*(R; H'(0,1))]
O(L,t)=2(0,t), Oc(Lt)+ki(£)0(L,t)+ky(t)z(1,t)=0}. (2.26)

Remark 2.3. The operator A(t) is non-autonomous, and its domain is independent on
time t, i.e., D(A(t)) = D(.A(0)) for all > 0.

Lemma 2.1. The energy is defined as

E(t):;/OL(au%eru,z{erOZ)dx—kC(t)r(t) /Olzz(p,t)dp—/(.l(hluqthzf))dx, (2.27)

2
where )
¢(t) =cku(t) (2.28)
is a non-increasing function in C(R,.) and
ke 5 aw
1T<§<2x<1—7). (2.29)

Let (1,0,z) be a solution of problem (2.19). Then the energy functional (2.27) satisfies

E(<—x [ x0T Mg cfi (-2 D)5
1

-3 [g(t)(l—r'(t)—Kkz(t))}zz(l,t) <0. (2.30)
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Proof. Multiplying the first and second equations of (2.19) by u;(x,t) and 6(x,t) respec-
tively, and integrating by parts on [0,L], we obtain

Ea (aui +dus dxz—/ BOxurdx, (2.31)
2 = / 6%dx 1k / 62dx +cky (1)62(L) + k2 ()8(1) / Bouudx.  (2.32)

Multiply the third equation of (2.19) by &(#)z(p,t) and integrate by parts on [0,1], this
results in

T(HE(t) /0 lzt(p,t)dpz —C(Zt) /O 1(1—T’(t)p)ai)zz(p,t)dp/ (2.33)
which leads to
G (R0 ["200a0) = 0T [p,ap+ 50 [ 820000 @30
with
SULCY
= C(zt)(l T (1))2? (1,t)+g(2t)zz(0,t)—‘:;QT’(f)/OlZZ(PIf)dP- (2.35)

The above estimates imply that

E'(t) :—K/()Leidx—xkl(t)GZ(L) —xko (£)0(1)z(1,t) — C(zt)(l—r’(t))zz(l,t)

S(t) po iy EOT(E) [T 5
-2 (L)—#/O 22dp<0 (2.36)
provided that
(1—”2”‘)k1(t)—€2(;?20, (2.37)
E(1) (1T (1)) — xek (1) 20, (238)
which are true from (2.29). The proof is complete. O

Lemma 2.2 (Corollary of Hahn-Banach Theorem-See [30]). Let X be a Banach space, FC X
and F # X, then there exists a functional ¢ € X, ¢ #0 such that

<¢,x>=0, VxeF. (2.39)
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Remark 2.4. Lemma 2.2 can be used to prove the subset F is dense in X, which only need
to consider a linear bounded functional ¢ satisfying ¢ =0 in F, and then prove ¢ =0in X.

Using the semigroup theory and Theorem 2.1, we can obtain the global well-posedness
as following theorem.

Theorem 2.3. Assume that the initial data Uy € H, and h;(-) € L*(0,L) for i=1,2. Then the
problem (1.1) possesses a unique global solution satisfying

U e C(]0,+00);H) (2.40)

under the hypotheses (H1)-(H5).
Furthermore, if Uy € D(A(0)), then we have the regular solution

U € C([0,400);D(A(0)))NCL([0,+0);H). (2.41)

Proof. Since the operator A(t) is non-autonomous, we can not use the framework of semi-
group to prove our result only. Combining perturbation theory of non-autonomous linear
operators by Kato with semigroup technique, we can derive the global well-posedness
by verifying Theorem 2.1 as following steps.

Step 1: D(.A(0)) is dense in H and D(A(t)) = D(.A(0)).
Lemma 2.3. The domain D(.A(0)) is dense in phase space H.

Proof. Let U= (1,9,0,2)" € H be orthogonal to all elements of D(.4(0)), which means
L . 1
(U, 0y = / (duit+adodx+b60)dx+&(£)T(t) / 22dp=0 (2.42)
0 0

for U=(u,0,0,z)T € D(A(0)). Taking u=v=0=0and z€ C§°(0,1), as the following result
from (2.42) for U= (0,0,0,z)" € D(A(0)), therefore

1
OO / 22dp=0.
0
Since C3(0,1) is dense in L2(0,1) and ¢(¢)7(t) > 0 but not always zero, then it follows
z2=0forall (p,t)€(0,1) xR*.
Similarly, taking u=v=z=0 for U=(0,0,0,0)T € D(A(0)), (2.42) and 6 € CT(0,L) lead
to

L A
/ bOfdx =0,
0

which results in =0 because of C3°(0,L) is dense in L?(0,L). Analogously, i=0and =0
can be obtained. Thus, by using Lemma 2.2, D(.A(0)) is dense in .
Noting that the operator A(t) independs on time ¢, this yields D(A(t))=D(.A(0)). O
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Step 2: The Cp-semigroup in H is generated by perturbed operator A(t) for A(t).
Lemma 2.4. For an arbitrary fixed time t, the perturbed operator A(t) for A(t) generates a
Co-semigroup in H.

Proof. By using the Lumper-Phillips Theorem, we only need to prove the operator .A(t)
satisfies dissipative and the maximal monotone properties, which is divided into the fol-
lowing procedures.

(1) A(t) is dissipative.
The time dependent inner produce of H is defined by
. L . 1
(ut) = / (dudi +adodx+b60)dx+&(£)T(t) / 22dp (2.43)
t Jo 0

for U= (u,0,0,z)" and U= (,5,0,2)T. Hence for

— 4 T
AU = (0 8u—Lo, Ko Bo, 127002 ) e pia)

and fixed time t >0, the inner product can be written and estimated as

L
<A(t)u,u>t - /0 (dvxity+ (ditys — BOx )0+ (KOrx — Bvx)0)dx
—eoe(n) [ Pz

0 T(t
§—K/0L9§dx—€(t)2r/<t)/olzzdp— (Kk1(l‘)—§(2t)> z2(0,t)

- EOOTO) 24 ety (12(0,0)2(1) (2.44)

with

Ko
2y/1—-d

Kuc\/l—dzz

—xka (£)z(0,8)z(1,) <kq(t) 5

22(0,t) + ki (t)

(1,1),
which results in

<A(t)u,u>t§—K/OL6§dx—(Kkl(t)—é(zt)—kl(t) o >22(O,t)

2v/1-d
N LU CIEIENR GG E
+ WTU) /()122(t,p)dp. (2.45)
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The estimate (2.45) implies that

<A(t)u,u> <0 (2.46)

for A(t) = A(t) —&(t)I with g;((?)' <k(t)= %/)(t))z, this means A(t) is dissipative.

(2) The maximal monotone property of A(t) and A(t).
The purpose is equivalent to prove the surjectivity of operator AI— A(t) for fixed t >0
and some A >0 from the Lumper-Phillips Theorem.

Let F= (f1,f2,f3,f4)T €H, by using the Lumper-Phillips Theorem, we only need to
seek a solution U= (1,0,0,z)T € D(.A(t)), such that

(AI—A(t))U=F, (2.47)

that is, U satisfies the following equations

Au—ov :fl,

Aav—duxx+BOx=af,

Abe — Kexx +ﬁ’0x - bfg, (2.48)
1—p7'(t)  _

Az+ sz —f4.

By virtue of the similar technique as in [8], the solution of fourth equation for (2.48) with
initial data z(#,0) =6(L,t) =6(L) can be written as

0
z(p,t):9(L)e‘7(P't)+T(t)e‘7(f"t)/ Me_”(s't)ds for a fixed t and T'(t) #O0.

0o 1—s7/(s)
(2.49)
where )
_, L o
cr(p,t)—AT,(t) In(1—p7'(t)).
Otherwise, if T/(t) =0,
0
z(p,t) :G(L)e_AT(t)p+T(t)e_“(t)p/ falx,s)e**3ds  for a fixed t. (2.50)
0

Choose p=1, one can derive

1
_ (1) c(1,0) fo o). (1)
z(1,t)=6(L)e" " +1(t)e /0 1—sr’(t)e ds=6(L)e”" " +z,

1
z(1,6)=0(L)e A" £ (t)e= AWM / Fae M54 =9(L)e A1) 424 (2.51)
0
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for v/(t) #0 and /() =0 respectively, where

1
_ o(L,t) f4 —0o(s,t) —At(t / t)s
zo="1(t)e /0 1—sr’(t)e ds, fae™ ds.

Suppose that 1 and v have some appropriate regularity, it yields that
v=Au—fi (2.52)

and v € H'(0,L) from the first equation in (2.48). Then, the first three equations of (2.48)
can be rewritten as

2 _
{ — AUy +A%au+ B0y _f~, (2.53)
—Kexx+)\b9+/\ﬁux :f
with f= af2+)\af1,f bfs+B(f1)x €L2(0,L).
The bilinear form of (2.53) for (u,0),(¢,w) in V4 x V; is defined by
B((u,0),(¢p,w)) :/L [dux¢x+)t2au¢+/39x¢+1c9xwx—|—Ab9w+)x[3uxw] dx
0
+xky ()w(L)O(L) +xka (H)w(L)O(L)e M) (2.54)

and

B((1,0),(¢,w)) = /0 ' [dux¢x+A2auq>+ ﬁ9x4>+1<9xwx—|—)\b6w+/\ﬁuxw] dx (255
ks (1)w(L)O(L) + ko (£)w(L)O(L)e A (2.56)

for T/ (t) #0 and 7'(t) =0 respectively.
Then, consider the variational problem

B((u,0),(¢,w))=F((¢,w)), (2.57)
B((u,0),(¢,w)) =F((¢,w)) (2.58)

with linear functionals form

Fl(p)= [ " (for+ Fo) vt ity L) e()e ™) [ 1 1_;’%6-0<5ff>ds, (1) £0

0

and

~ L ~
Flga)= [ (fo+Fe)dxteka(u(Lyee ™ [ 0has,  2(t)=0
0
Clearly, B(w1,w,) is continuous and coercive in V; x V, with the equipped norm

e, 0) 112 = Nl + e |2+ [10112 + [ 1. (2.59)
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T
7

Indeed, since assumption (Hy) guarantees that o(1,t) = T((tt)) In(1—17/(t)) <0 holds, there

—1)2R82
exists some A = A >0 satisfies 12 2? F < %, such that the integration by parts results in

the coercive property

L
B((u,e),(u,e)):/o {duﬁzc"H\ZWZ+,39xu+1<9,2(+}\b92+/\5ux9} =
ik (162 (L) ko (1) 62 (L) e )

L
2/ [Zu,zc+)»%au2+x9§+)t§b92}dx+Kk1(t)(1—1x)92(L)
0

>C1|(,0) |2 (2.60)

and

L
B((1,0),(1,0)) = / [dui+A2au2+ﬁexu+K9§+Ab92+A/3uxe} dx
0

+xky (f)QZ(L) +Kk2(t)92(L)e*AT(t)
>C1||(u,0)]1% (2.61)

Therefore, by Lax-Milgram theorem, the problem (2.53) possesses a solution for (u,0) €
Vi xVy, ie., for any (¢,w) in the space C§°(0,L) x C°(0,L) which is dense in V; x V3, the
variational forms (2.57) and (2.58) hold. Since F((¢,w)),F ((¢,w)) € L?(0,L), then we can
show that (1,0) satisfy the boundary conditions and v=Au— f; € V;. Consequently, from
the L2-theory of elliptic equations, the abstract problem (2.47) possesses a unique solution
UeD(A(t)) for a fixed t > 0. Since the boundedness of &(t) >0, we can conclude that
A(t)—#&(t)I is surjective, which leads to A(t) is maximal for a fixed t > 0. Then the proof
is complete. O

Step 3: The stable property of A(t).

Lemma 2.5. The family of non-autonomous operators A(t) is stable in the phase space H for
te[0,T].

Proof. For U=(u,v,0,z) TeH, by the theory of Kato as Theorem 2.1, we only need to verify
that

forallt,s€[0,T]. (2.62)

Let |[U||? = ||(1,v,6,2)|)3, be the norm associated with inner product (2.24). Then, it
yields
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Ly
a3 —ju|Zew

= (1) [Jue B+ a3+ 1017] + (2020 —2(5)r(s)es ™) [ 2(0)ap

0
fors, t€[0,T] and 0 <s <t <T. The non-negative parameter Tio\t—s] implies that 1—

L(t=s)

e <0. Hence, we only need to prove

2()7(t)~E()r(s)en " <o .69
Since 7(t) € W2*([0,T]) < C'([0,T]), it is easy to see that p(t) can be represented by
T(t)=1(s)+7'(r)(t—s), reE(st).
Then by the monotone property ¢’ <0 and ¢ >0, we have

ST <E(s)T(s)+E(s)T'(r)(t—s),
which results in
g(t)T(t) [7'(r)
<1+
g(s)(s) (s)
from (2.15) and (2.16). This shows that (2.62) is true. In addition, the trivial case for
|U||. =0 holds obviously.

Hence, combining Lemma 2.4 and (2.62), we can conclude that A(t) is stable in H by
using Proposition 1.1 in [25]. O

l L
| |t—s| <1+ —|t—s] <en!'!
To

Step 4: The uniform bounded of %.Z(t).
Lemma 2.6. The uniform bounded & A(t) € LL([0,T],B(D(.A(0)),H)) holds, here
L2([0,T],B(D(A(0)),H))

is the space of equivalent class of essentially boundedness, measurable functions from [0,
B(D(.A(0)),#), B(D(A(0)),H) is the set of all bounded linear functionals from D (A(
H.

T]
)

to
) to

Proof. Noting that

0o 1 0 0
daxx 0 _gax O
AD=1 o by % 0 /
b X b XX
P
0 0 o =t
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we deduce that

(2.64)

is also bounded for f € R* because LXOTW-TWETM-1) j¢ pounded on [0,T] from (2.15)-

T2(t

(2.16). Hence, (2.64) results in the boundedness of

d -~ d y
SAMU= (aA(t)—K (t)) u
for Ue D(A(0)) and t € R" because
R (1) = T(t)T"(t) T(H)V1+(T'(1)?
C2t() 1+ (T ()2 27%(t)
2
is bounded from (2.15)-(2.16), where & () = w
The proof of this lemma is complete. O

Step 5: The local mild solution Some lemmas are needed to verify the local existence of
mild solution for our problem.

Lemma 2.7. Assume the hypotheses (H1)-(H5) hold. Let {A(t)} =—{A(
operators family in H. Then, { A(t)} is stable, which also Lipschitz in D (A(

)} be a unbounded
)-

Proof. By the definition of A(t) = A(t)—x(t)I with appropriate x(t) such that A(t) is
positive and self-adjoint, we can obtain that A(t) from Lemma 2.5. Noting that the per-
turbation of A(t) is linear, using the technique in [27], we conclude that A(t) is stable in
H.

Since the perturbation is linear, for fixed U € D(.A(t)), we have

t
t

11—+t
LA AUl ) < (“1321) t—=sllU 2.65)
which implies the Lipschitz property. ]

Lemma 2.8. Assume the hypothesis (H4) holds. Then, the non-autonomous nonlinear term
H(u,0) are Lipschitz in H. Moreover, the term H(u,0) is also uniform bounded in H.

Proof. From (2.12) in assumption (H3), by virtue of the similar technique of Propositions
2.7 and 2.8 in [27], the Lipschitz continuity and uniform boundedness of H(u,6) in H can
be derived easily. O
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Lemma 2.9. Assume that the initial data Uy € H, and h;(-) € L*(0,L) for i =1,2. Then the
problem

dt
U(0)=Uo,

possesses a local solution in ‘H under the hypotheses (H1)-(H5).

du
{_A(t)U+H(u,9), (2.66)

Proof. Combining the Lemmas 2.7-2.8, using the Theorems 2.1 and 2.2, we can conclude
the local existence of mild solution. O

Step 6: The global mild solution

(1) The energy of problem should be redefined as (2.27) which is important to extend local
solutions. Using the similar technique as in Lemma 2.1, the energy E(t) is non-increasing
along any solution U(t) which satisfies that there exist Cp >0, such that

|U(t)[|3, < Copyn,(E(H)+1),  forall t>0. (2.67)

(2) From Lemmas 2.3-2.6 and Kato’s theory of operator perturbation, the abstract Cauchy
problem

a4, ~
ar AL (2.68)
Uu(0)="Uy
has a unique solution
U(t) =eh A1, € C([0,T], D(A(0)))NCH ([0, T], H).

Hence, U(t) = elo *(s)ds{](t) is the solution of problem

du

ar AW (2.69)
Uu(0) = U,

because of

i _ ftK(S)dS 7 ftK(S)dSi 7
dtu(t) =x(t)elo U(t)+eho dtu(t)

—e X (e (1) T+ A(4)) U (t) = A()U(1).

Consider the non-homogeneous problem (2.66). Then, the unique mild solution of (2.66)
can be computed as

t t t—s
U(t) =eh A 4 / eh A 0)ds,  for t € (0, tmax) (2.70)
0

from (2.69), the estimate (2.67) and Lemmas 2.7-2.9 guarantee that the local solution can
be extended to global solution.
The proof is completed. O
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3 Uniform stability and dynamics

3.1 The theory of quasi-stability and finite-dimensional attractors

In this section, the theory of finite dimensional global and exponential attractors will be
presented for preparation, which are originated from Chueshov and Lasiecka [22].

Definition 3.1 (Chueshov and Lasiecka [22]). A dynamics system (X,S(t)) is called gra-
dient system if there exists a Lyapunov functional & satisfies

(1) @(S(#)U) is non-increasing with respect to t >0 for any U € X.

(2) The stationary points of ® are fixed points of S(t), i.e., D(S(t)z) =P(z) for all ¢.

Definition 3.2 (Chueshov and Lasiecka [22]). The dynamic system (X,S(t)) is called
quasi-stable on a set B C X if there exists a compact semi-norm nx on X, and nonnegative
scalar functions a(t), c(t) are locally bounded on [0,00), b(t) € L' (R™) and lim;_,cb(t) =0,
such that

IS() U =S (U2 ||% <a(t) || U~ U2 ]% (3.1)

and
IS(H UL —=S() U5 <b(#)[|Ur — U2 || 5 +c(t) sup [nx(ur(s) —ua(s))]? (3.2)

O<s<t

for U, U, €B.

Theorem 3.1 (Chueshov and Lasiecka [22]). Let (X,S(t)) be a gradient system and suppose
that the system is quasi-stable on every bounded positively invariant set BC X. Then (X,S(t)) has
a global attractor A= M (N') with finite fractal dimension, here N is the set of equilibrium for
S(t), M4 (N) is the unstable manifold for N'. Moreover, the generalized finite fractal dimensional
exponential attractor also exists under suitable condition for S(t).

3.2 Gradient system

Based on the global well-posedness in Theorem 2.3, under the hypotheses (H1)-(H5), the
solution for problem (2.19) generates a dynamic system (#,5(t)), where S(t):H — H is
a solution semigroup. In this section, we will prove that (#,5(t)) is a gradient system,
which possesses a Lyapunov functional.

Lemma 3.1. For Uy= (uo,u1,00,f0)" € H, the dynamic system (H,S(t)) is a gradient system.

Proof. The existence of Lyapunov functional is E(¢). Denote ®(S(t)U) = E(t) along the
solution trajectory S(t)U = (u(t),v(t),0(t),z(t))T, which is non-increasing with respect to
t from Lemma 2.1, assume

O(S(H)Uo) =S(t)Uo
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for all >0 and Uy = (ug,u1,70, o) € H. Then E'(t) =0 implies
L / 1
_ 2 _g(t)T(t)/ 21 ka(t) S(t)1 2
K/O 6:dx ) E dp K[k1(t) 5 P ]9 (L)
1

—E[g(t)(l—r/(t)—Kkz(t))}zz(l,t):o. (3.3)

Since every term on the LHS of (3.3) is non-positive, we can conclude that

Uo=5(t)(0,60,0,0)T = (0,60,0,0)T

is the fixed point. Then, (#,S(t)) is a gradient system. O

3.3 Asymptotic stability and quasi-stability

In this section, the quasi-stability is given by multiplier approach, then the uniform sta-
bility can be obtained by the similar technique.

¢ Quasi-stability

Theorem 3.1. The dynamic system (H,S(t)) has the property of quasi-stability on a set BC H
as in Definition 3.2 under the hypotheses (H1)-(H5).

Proof. Suppose that U;= (u;,v;,0;,z;)T (i=1,2) are two solutions of the problem (2.19) with
initial data Ujp = (ujo, 1,050, fio)", let U=U; — Uy = (,9,0,2) be the difference with initial
data Uy = (ilo, 11,00, fo)T. Then it is easy to check that U satisfies

aﬂﬁ—dﬁxx—kﬁé —|—(h1(1/11) ]’ll(uz)) 0,

b0 — KOs + By + (h2(61) —h2(62)) =0,

T(t)Ze(p,t) + (1 pr< ))Zo(p,) =0, in (0,1) xR,

i (0,) =d(L,t 0,£)=0, t>0, (3.4)
O (L,t)+ki(t)z (0,t)+k2( )z(1,t) =0, t>0,

ii(x,0) =iig(x), @ (x,0) =iy (x), B(x,0) =By (x), >0,
LO(L,t—7(0))=fo(L,t—7(0)), in (0,L) x (0,7(0)).

The energy functional for problem (3.4) is defined as

:;/o. (ai? +di%+bd*)dx W/()122(p,t)dp,

which is non-increasing and equivalent to the norm ||U; — U, ||%, because of (2.28)-(2.29)
by using the similar technique as in Lemma 2.1, i.e., there exist C3, C4 >0, such that

G|t — W13, < G(1) < Cul|Un — L3,

Hence, the inequality (3.1) holds. Next, we only need o to prove (3.2) in Definition 3.2 as
the following Lemma 3.2, which is the key point here. O
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Lemma 3.2. Let Uy, Uy be two solutions of problem (2.19) with initial data Uy, Uy in bounded
subset B C H. Then there exist positive constants <y, By, By, depending only on B, such that

U —Un |3, < Boe™ ™" || Uno — Uno[3,+ B sup [|ur(s) —u2(s)][3- (3.5)

0<s<t

Proof. The proof can be transformed into the estimate of G(t) because G(t) and ||U; —
U3, are equivalent, which is divided into the following lemmas by using multiplier
method. O

Lemma 3.3. Define the functional ¢(t) as

cp(t):a/OLat(t)ﬂ(t)dx.

Then, there exists a constant mg > 0, such that

/ d [t , BA [t F o SIPIE
¢(t)g—§/o uxdx+g/0 9xdx+a/0 w2dx-+Cy, ||| (3.6)
Proof. Noting that,
L
cp’(t):u/ ﬂttadx—l—u/ a2dx
0 0

and the estimate

L L
/ ailyady = / (Aditxx— BBx+ (h (1) — 1 (112)) )il
0 0

d o, BA g
S_E/o uiderg/O 82dx+Cy || a1|% (3.7)

is true from hypothesis (H3) and the global well-posedness, we can derive the desired
result. O

Lemma 3.4. Define the functional ¢(t) as

L x
q)(t):—ab/ 5/ i1¢(s,t)dsdx.
o Jo

Then there exist parameters my >0 and my >0, such that

L L L
¢(n<-"1 /O 22dx+26 /O 22dx+ms /O 2dx+C IR (D (LH) +R(H2(LH)].  (3.8)
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Proof. The simple computation yields

L L L L
’t):—a[i/ ﬁfdx—f—bﬁ/ ézdx—bd/ éaxdx—i—mc/ 0. irdx
0 0 0 0
~ L
tax (ki (DB(L, 1) +a(DZ(1,1)) ) /0 dx
L L
+a/0 (h2(91)—h2(92))dx/0 dx
L _ rx
+b/0 9/0 (1 (1) — i (112) )dsdx.
Noting that the estimates
L L_ mi, 5 A2
a/o (h2(91)—h2(62))dx/0 i < 2|ty -+ aLCo 613, (3.9)
L_ rx o
b/o 9/0 (hy (117) — iy (102) )dsdlx < b1 | >+ BLC5Ca 0] (3.10)

are true from hypothesis (H3), using the embedding H'(0,L) < L*(0,L), we can arrive
the desired estimate (3.8) by the Poincaré and Young inequalities. O

To perturb the fourth term in G(t) for using the multiplier approach, the functional
J(t) and perturbed energy G(t) can be defined as

() =8 [ e 2(p0)dp,
G(t)=NiG(t)+¢(t) +e19(t)+] (1),

where Nj is sufficiently large and ¢; is an appropriate small parameter.
The estimate of J(¢) is given in following lemma.

Lemma 3.5. There exists a parameter C; >0 such that the estimate

()< -E0-2)e OPANHERLO-CE [ Pondp GBI
holds for & > 0.
Proof. The estimate of J'(t) can be proceeded by
Tt -1 d 10 =T (D)) =
)=t [ Sete )2 ndpre [ 4p (=7 ) )2 pt)dp
—EA-T(t)e "W (L,t)+EZ2(0,1).
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Since

d —pr(y 4 d 1)) e—PT(t) 0

E(T(t)e )+d—p((1—pr (t))e )=—-217(t)e <0, (3.12)
this lemma holds from choosing appropriate parameter C; > 0. O

The equivalence of G(t) and G(t) shall be illustrated as following.
Lemma 3.6. For large enough My and My, small sufficient e, there exist Ky,Ky >0, such that
KiG(t) <G(t) <K, G(h).

Proof. By the Holder and Young inequalities, it is easy to check the equivalence in this
lemma. O

e Proof of Lemma 3.2: From Lemmas 3.3-3.5, one can derive
G'(H)=NiG'(t)+¢' (1) +e19' (1) +] (t )
<-— (KNl———mzel / 92dx ( )N +C]C>/ de
~{Fema-v <t>>—mk1<t>] +E(1=7()e O —Ceere®i (1) } (L)

- (521_581> /(;Lﬁidx— (mlsl—a) /OLﬁfdx

—{le[kl(t)—‘”‘kzl() ézm & Ce kz()}QZ(L,t)+M(t), (3.13)

where M () =G, [1]]2,
Suppose that Nj is large enough, choose appropriate £1 and 6 >0 small enough, it is
easy to check that

A
KNl—'B——m281>O

2d
% [g(t)a—r'(t)) —mklu)} FEA—T'(1)e™ ™ — Coera2k3 () >0,

d
§—5£1>0, mqe1—a>0.

For our purpose, we only need

kN [kl(t) —Mkzl(t) —‘32(1?] —&—Ceerki(t) >0,

e, (1-5)ki(t)— ¢ 5 014s guaranteed by (2.37). Then, all coefficients on RHS of (3.13)
except M( t) are negatlve
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Hence, there exists K3 >0, such that
G'(t) < —K3G(t)+M(t),

which results in

G'(t)< —%é’(tHM(t) (3.14)
1

for all t >0 by Lemma 3.6. Apply Gronwall’s lemma to (3.14), it yields
~ ~ K bk
G <G M+ [ e 1 M(s)ds,
0

which leads to

_fay K€
G(t)S%G(O)e iy L
1

sup [|i]|7s.
Ks 0<s<t L

By the uniform boundedness of U in H, and the equivalence between G(t) and ||U; —
U,||3,, we conclude that

CiKr K K G,
. 2 Galo it B 2 1 B 2
U —Ua|[3 < K || Uro—Uso |3+ Coks Oililthul(S) uz(s)|/3
for all t >0, which results in the quasi-stability of Lemma 3.2. O

e Uniform asymptotic stability

Theorem 3.2. Suppose that Uy = (u9,u1,00, fo)T € H. Then there exists C >0, such that the
uniform asymptotic stability

U5 =11 (1, 16,8,2) 13, < C(1+ | (0, 111,80, fo) |1 3¢)
for semilinear problem (2.19) holds under the hypotheses (H1)-(H5).

Proof. From Lemma 2.1, there exist positive constants Y >0 and C;>0fori=1,2, we can
see that E'(t) <0 and

YUl -G <E(t) <G+|ulf3)

for U= (u(t),us(t),0(t),z(t))T € H and t >0.
Define the functionals as

$1(t) :a/Lut(t)u(t)dx,

0
L x
p1(t)=— b/ 9/ uy(s,t)dsdx,
o Jo
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J1(t)=¢t(t) /OleT(t)pzz(p,t)dp,

let

E(t) = NQE(t) +¢1 (t) +e¢1 (t) +J1 (t),

which is equivalent to E(t) for sufficiently large N, and appropriate small & >0, use the
similar multiplier technique as in Theorem 3.1, we can achieve

Combining the equivalence of E(t) and E(t), by using Gronwall’s lemma, we can con-
clude that there exists C >0, such that

1 Gua(£),¢(£),0(8),2(8)) 3, < C(1+ | (u0,11,00, fo) 1 3,)

for t >0 and Uy € H. The proof is complete. O

3.4 Dynamics

In this subsection, the existence of global and exponential attractors can be obtained by
virtue of uniform asymptotic stability and the quasi-stability of gradient system, which
leads to the asymptotic smoothness.

Theorem 3.3. Assume that Uy = (uo,u1,00,fo)" € H and hypothesis (H1)-(H5) hold. Then
the gradient system (H,S(t)) for the problem (2.19) possesses a finite fractal dimensional global
attractor A C H, which is consisted by the unstable manifold M"(N'), where N is the set of
stationary points.

Moreover, the exponential attractor AP C H with finite fractal dimension for (H,S(t)) is
also obtained for our gradient system.

Proof. In order to use Theorems 2.1 to attain the existence of global attractors for problem
(2.19), the proof is divided into three steps.

Step 1: A suitable Lyapunov functional has been defined, which results in the dynamical
system (H,S(t)) is gradient.

Step 2: Note that ||- |4 is a compact semi-norm in H}(Q) because of H}(Q) —< L*(Q)),
then the quasi-stability is presented in Theorem 3.1, which guarantees (#,S5(t)) is asymp-
totically smooth.

Step 3: Suppose that U(t) = (u(t),us(t),0(t),z(t))T is the stationary solution for problem
(2.19), which satisfies

{—duxx—i—ﬁf)x—i—hl(u) -0, in (0,L) x (0,00), 515

— KB+ (6) =0, in (0,L) x (0,00).
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Then
L L L
duuxyy§+xy|exug+/o hl(u)udx—i—/o h2(9)9dx§—[3/0 1bydx.
Since
L ~
/hl(u)udxz—£0A||u|\2—phlL,
0
L
/hz(e)edxz—zoixy|9||2—ph2L,
0

there exists a positive constant C' =C’(L,y,d,x,A,B,p,), such that
d|ux|3+x|6:13<C,

which implies all stationary solutions are uniformly bounded in H.

The estimate (2.67) implies that ||U||3 — oo leads to ®(S(t)U) — co. Conversely, the
estimates in uniform stability implies ||U |3 — o0 as (S (#)U) — oo.

Hence, the set of stationary solutions for problem (2.19) is bounded in H. In addition,
®(S(+)U) — o0 if and only if ||U||3 — oo.

In conclusion, all conditions of Theorem 3.1 have been satisfied, the results for dy-
namic systems of our problem is obtained. O

4 Further research and comments

From the well-psedness, stability and dynamics in above sections, we can conclude that
the therapy procedure is valid from theory viewpoint. However, there are many fac-
tors influencing the therapy process because of the complexity for human body, such as
randomness. In the mathematical modeling, the general/degenerate memory and delay
on velocity /displacement are also important for the therapy effect, which are interesting
topics in application of mathematics.
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