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Abstract. This paper is concerned with the well-posedness, uniform asymptotic sta-
bility and dynamics for a semilinear thermoelastic system with time-varying delay
boundary feedback and nonlinear weight, which can be used to describe the physical
procedure of meridian retraction and release therapy. The perturbation theory of linear
operators by Kato is used to deal with the invalidity of Lumper-Phillips theorem on
non-autonomous PDEs operator, the multiplier approach and quasi-stability method
lead to the stability and dynamics for our semilinear problem, which are also true for
linear thermoelastic system without weight.
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1 Introduction

The delay and memory influence the stability and dynamics for evolutionary differential
equations, which come from physics, biology, medicine, material, artificial intelligence
and applied science/engineer, such as the transmission problem of hyperbolic equations.
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In the traditional Chinese medicine, there exists a physical therapy procedure which
is called as meridian retraction and release therapy. The principle of this therapy can
be seen as an abstract and simplified mathematical model influenced by delay, which
is consisted by a coupled system via wave propagation and heat transportation with
time-varying delay boundary feedback and nonlinear weight as the following semilinear
thermoelastic system

autt−duxx+βθx+h1(u)=0, in (0,L)×(0,∞),
bθt−κθxx+βuxt+h2(θ)=0, in (0,L)×(0,∞),
ux(0,t)=u(L,t)= θ(0,t)=0, t≥0,
θx(L,t)+k1(t)θ(L,t)+k2(t)θ(L,t−τ(t))=0, t≥0,
u(x,0)=u0(x), ut(x,0)=u1(x), θ(x,0)= θ0(x), t≥0,
θ(L,t−τ(0))= f0(L,t−τ(0)), in (0,L)×(0,τ(0)),

(1.1)

where (u0,u1,θ0, f0) belongs to some appropriate Sobolev space, u(t,x) is the displace-
ment of wave along meridians, θ denotes the heat flow which obeys the Fourier law, hi(·)
(i = 1,2) are the semilinear external forces caused by the retraction and release therapy
technique on the boundary point x=L. Since the stability and dynamics are important in
curative effect from the view of theory, the discussion of problem (1.1) is our objective in
this paper.

When the semilinear terms h1(u) and h2(θ) equal to 0, the weights k1(t) and k2(t)
reduce to constants, the system (1.1) is degraded into the problem in [1]. Especially, if the
time-varying delay τ(t) becomes constant, (1.1) reduces to the problem in [2].

As our best acknowledge, the research on hyperbolic equation with delay has been
investigated in fruitful literatures, for instance [3–13]. The thermoelastic systems con-
tain three types according to the different damping, which are composed by wave equa-
tion and heat flow. The well-posedness and stability for classical thermoelastic system
have been studied in last thirty years, which can be referred in monographs as Jiang and
Racke [14], Liu and Zheng [15]. The controllability and stability for thermoelastic sys-
tem can be seen in [16, 17] and some related literatures therein. Originated from the idea
in Nicaise, Pignotti and Valein [8], Mustafa [1, 2] considered the thermoelastic systems
with boundary feedbacks which contain constant, time-varying and distributed delays,
and derived the stability of energy functional. Thereafter, Mustafa and his collaborator
Kafini, Messaoudi in [18–20] investigated the Timoshenko-type system of thermoelastic-
ity with delays and showed the energy decay. Based on the above related literatures, the
global well-posedness, stability and dynamics for semilinear thermoelastic system with
time-varying delay and nonlinear weight are our objective in this presented paper, which
contains the following results and features.

(1) The problem (1.1) is using to describe the transportation in medicine here, the global
well-posedness has been achieved by semigroup theory in [21] together with the
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perturbation of linear operators by Kato in [19]. By virtue of the Dafermos transfor-
mation, (1.1) can be written as an equivalent abstract form (2.25), the difficulty here
is the operator A(t) is non-autonomous, which leads to the invalidity of Lumper-
Phillips Theorem as in [15].

By introducing the perturbation theory of non-autonomous linear operator as in
Theorem 2.1 from Kato [19], we can derive the desired well-posedness for (1.1)
via verification Theorem 2.1 of perturbed operator Ã(t) in Subsection 2.5, which
presents a strict proof for existence of global weak solution. The procedure in Sub-
section 2.5 also gives strict formal analysis for the linear case of problem (1.1) with-
out weight in Mustafa [1].

(2) Using multiplier technique for energy functional of (1.1), the quasi-stability and
uniform asymptotic stability of the gradient system for (1.1) have been attained.
From the quasi-stability method introduced by Chueshov and Lasiecka [22, 23],
Chueshov [24], the finite dimensional global and exponential attractors A and Aexp

have been shown respectively, here A is consisted by the unstable manifold Mu(N )
with the set of stationary points N . Our results of stability and dynamics are the
generation of [1] and [2].

(3) Since the balance between nonlinear weights k1(t) and k2(t) in the boundary feed-
back is crucial for the stability of gradient system, the hypotheses (H1) and (H2)
guarantee the asymptotic stability of gradient system, which are sufficient condi-
tions. Otherwise, the instability similar as in Nicaise and Pignotti [7] can be ob-
tained or not, this is still unknown.

The rest of this article is arranged as follows: In Section 2, we present some prelimi-
naries and global well-posedness to (1.1). The stability and dynamics for gradient system
have been shown in Section 3.

2 Global well-posedness

2.1 Some useful lemmas and remarks

Consider the following Cauchy problem
dU
dt

=A(t)U,

U(0)=U0.
(2.1)

Then the global well-posedness of problem (2.1) is derived by the perturbation theory of
linear operator from Kato [25] as following theorem.
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Theorem 2.1 ([25]). Assume that
(1) Y=D(A(0)) is a dense subset of H.
(2) D(A(t)) is independent on time t, D(A(t))=D(A(0)) for all t>0.
(3) A(t) generates a strongly continuous semigroup on H for all t∈ [0,T], and the family A=
{A(t)|t∈ [0,T]} is stable with stability constants C and m independent on t, i.e., the semigroup
(St(s))s≥0 generated by A(t) which satisfies

∥St(s)U∥H≤Cems∥U∥H,

for all U∈H and s≥0.
(4) At(t) belongs to L∞

∗ ([0,T],B(Y,H)), which is the space of equivalent classes of essentially
bounded, strongly measurable functions form [0,T] into the set B(Y,H) of bounded linear opera-
tors from Y into H.

Then, problem (2.1) possesses a unique solution U∈C([0,T],Y)∩C1([0,T],H) for any initial
data in Y.

Next, we will present some remarks for the preparation of discussion in sequel.

Remark 2.1. Since problem (1.1) is defined in one dimension, although the boundary con-
tains Neumann case, the Poincaré inequality still holds, this is important in the process
of multiplier approach, see [26].

Remark 2.2. The estimate of θ satisfies

1
L

θ2(L,t)≤
(∫ L

0
θxdx

)2
≤
∫ L

0
θ2dx. (2.2)

2.2 The abstract theory of non-autonomous hyperbolic-type evolutionary equa-
tions

This section is to present local existence of mild solution for preparation, which can be
found in [27, 28] and [21].

Denote Λ(t)=−A(t), let Z as a abstract Banach space, consider the Cauchy problem
for non-autonomous hyperbolic-type evolutionary equations as

dU
dt

+Λ(t)U= f (t,U),

U(τ)=Uτ ∈Z ,
(2.3)

where the operator Λ(t) satisfies

(i) {Λ(t)} is non-negative stable generator of C0-semigroup in Z with stable constants
M and ω, where the stability is defined provided that there exist constant M ≥ 1
and stable parameter ω such that

(ω,+∞)⊂ρ(Λ(t)), t∈ [τ,T] (2.4)



38 L. R. Zhang, X. Z. Li and A. Miranville/ J. Partial Diff. Eq., 38 (2025), pp. 34-60

and ∥∥∥∥∥ k

∏
j=1

(λ+Λ(tj))
−1

∥∥∥∥∥
L(Z)

≤M(λ−ω)−k, λ>ω (2.5)

for τ≤ t1≤ t2≤···≤ tk ≤T with k=1,2,···, ρ(·) denotes the resolvent set.

(ii) Let Y be a Banach space satisfies Y ↪→Z and Y is dense in Z . Then the domain
D(Λ(t))=Y , where Y is independent on the choice of t.

(iii) Λ(t)∈Lip∗([τ,+∞);L(Y ,Z)) or ∂tΛ(t)∈L∞
∗ ([τ,+∞);L(Y ,Z)), more details can be

seen in [27].

In addition, the nonlinear term f (·,·) :R×Z→Z satisfies that for all R>0, there exists
C=C(R)>0 such that {

∥ f (t,U)− f (t,V)∥Z ≤C(R)∥U−V∥Z ,
∥ f (t,U)∥Z ≤C(R).

(2.6)

Theorem 2.1 ([21, 28]). Assume the hypotheses (i)–(iii) hold. Then there exists a unique
linear evolutionary process S(t,s) with τ≤ s≤ t in Z satisfies

(a) S : [τ,∞)→L(Z) is strong continuous and S(s,s)= Id.

(b) S(t,s)S(s,r)=S(t,r) for all r≤ s≤ t.

(c) S(t,s)Y⊂Y and S : [τ,∞)→L(Y).

(d) dS(t,s)
dt =−Λ(t)S(t,s) holds in the strong topology of L(Y ,Z).

(e) dS(t,s)
ds =S(t,s)Λ(s), which is strong continuous from [τ,∞) to L(Y ,Z).

(f) ∥S∥∞,Z :=supt,s∈[τ,∞)∥S(t,s)∥L(Z)≤Meω(t−s).

Definition 2.1. The function U:[τ,τ+τ0]→Z is a mild solution for problem (2.3) for appropriate
τ0 provided that U∈C([τ,τ+τ0],Z) satisfying

U(t)=S(t,τ)uτ+
∫ t

τ
S(t,x) f (s,U(s))ds. (2.7)

Theorem 2.2 (Local existence of mild solution–See [27]). Assume the hypotheses (i)–(iii)
hold, the nonlinear term f satisfies (2.6). Then for arbitrary Uτ ∈BZ (0,r), the abstract problem
(2.3) possesses a unique mild solution U(·;τ,Uτ):[τ,τ+τ0]→Z which is continuously dependent
on the initial data for appropriate τ0>0.
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2.3 Assumptions

For the well-posedness and stability, the forcing assumptions on k1(t) and k2(t) are stated
as follows.
(H1): The function k1(t) : R+ → (0,∞) is non-increasing and belongs to C1(R+), which
satisfies ∣∣∣ k′1(t)

k2(t)

∣∣∣≤M1 (2.8)

for all t≥0 and some constant M1>0.
(H2): The function k2(t) :R+→R is a C1(R+)-class function such that

|k2(t)|≤αk1(t) (2.9)

|k′1(t)|≤M1k1(t) (2.10)

hold for some 0<α< 2
a and M2>0.

(H3): For hi(·)∈C2(Ω) with i=1,2, there exist constants Chi >0 such that

|h′′i (s)|≤Chi(1+|s|), for all s∈R, (2.11)

which implies that, for some Chi >0,

|hi(s1)−hi(s2)|≤Chi(1+|s1|2+|s2|2)|s1−s2|, for all s1, s2∈R. (2.12)

In addition, assume that there exist ρ f >0, ℓ0=min{ d
4 , κ

4}>0, such that

hi(s)s≥−ℓ0Λ̃s2−ρhi and Hi(s)≥− ℓ0Λ̃
2

s2−ρhi , for all s∈R (2.13)

and

liminf
|s|→∞

h′i(s)>−ℓ0Λ̃ (2.14)

with Hi(s)=
∫ s

0 hi(σ)dσ hold, where Λ̃ is the constant in the Poincaré inequality for our
one dimensional problem.
(H4): Moreover, similar as in [6, 8, 11], we assume that

τ(t)∈W2,∞([0,T]), ∀T>0 (2.15)

0<τ0≤τ(t)≤τ1, |τ′(t)|≤ l<1 (2.16)

|τ′′(t)|≤ l̃ (2.17)

for some positive parameters τ0, τ1, d and all t>0.

(H5): The parameters satisfy
β

2dΛ̃
≤ κ

4
.
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2.4 The equivalent system

Originated from Dafermos [29], and Nicaise and Pignotti [11], we introduce the Dafermos
transformation

z(ρ,t)= θ(L,t−ρτ(t)) (2.18)

for (ρ,t)∈ (0,1)×(0,∞), then the problem (1.1) is equivalent to

autt−duxx+βθx+h1(u)=0, in (0,L)×(0,∞),
bθt−κθxx+βuxt+h2(θ)=0, in (0,L)×(0,∞),
τ(t)zt(ρ,t)+(1−τ′(t)ρ)zρ(ρ,t)=0,
ux(0,t)=u(L,t)= θ(0,t)=0, t≥0,
θx(L,t)+k1(t)z(0,t)+k2(t)z(1,t)=0, t≥0,
u(x,0)=u0(x), ut(x,0)=u1(x), θ(x,0)= θ0(x), t≥0,
θ(L,t−τ(0))= f0(L,t−τ(0)), in (0,L)×(0,τ(0))

(2.19)

for z(0,t)= θ(L,t) and z(1,t)= θ(L,t−τ(t)).

2.5 Global well-posedness

In this part, the existence and uniqueness of global solution will be shown by using Kato’s
operator perturbed theory and semigroup theory.

The phase space H is Hilbert space, which is defined

H=V1×L2(0,L)×L2(0,L)×L2((0,1)×R+) (2.20)

with

V1={w∈H1(0,L)|w(L)=0}, (2.21)

V2={w∈H1(0,L)|w(0)=0}, (2.22)

V3={w∈H2(0,L)|wx(0)=w(L)=0}, (2.23)

and inner product of H is equipped with

(U,V)H=
∫ L

0
(duxūx+avv̄+bθθ̄)dx+ξ(t)τ(t)

∫ 1

0
z(ρ,t)z̄(ρ,t)dρ (2.24)

for U=(u,v,θ,z)T and V=(ū,v̄, θ̄, z̄) in H.
Denoting v=ut and U=(u,v,θ,z)T, then the problem can be rewritten as

dU
dt

−A(t)U=H(u,θ),

U(0)=U0=(u0,u1,θ0, f0),
(2.25)
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where H(·,·) is defined as

H(u,θ)=


0

−h1(u)

−h2(θ)

0


and the operator A(t) : D(A)→H as

A(t)U=



v
d
a

uxx−
β

a
θx

κ

b
θxx−

β

b
vx

−1−τ′(t)ρ
τ(t)

zρ(ρ,t)


,

the domain of operator A(t) is defined by

D(A(t))={(u,v,θ,z)T ∈V3×V1×(H2(0,L)∩V2)×L2(R+;H1(0,1))|
θ(L,t)= z(0,t), θx(l,t)+k1(t)θ(L,t)+k2(t)z(1,t)=0}. (2.26)

Remark 2.3. The operator A(t) is non-autonomous, and its domain is independent on
time t, i.e., D(A(t))=D(A(0)) for all t>0.

Lemma 2.1. The energy is defined as

E(t)=
1
2

∫ L

0
(au2

t +du2
x+bθ2)dx+

ξ(t)τ(t)
2

∫ 1

0
z2(ρ,t)dρ−

∫
Ω
(h1u+h2θ)dx, (2.27)

where
ξ(t)= ξ̄k1(t) (2.28)

is a non-increasing function in C1(R+) and

κα

1−l
< ξ̄<2κ

(
1− aα

2

)
. (2.29)

Let (u,θ,z) be a solution of problem (2.19). Then the energy functional (2.27) satisfies

E′(t)≤−κ
∫ L

0
θ2

xdx− ξ(t)τ′(t)
2

∫ 1

0
z2dρ−κ

[
k1(t)−

k2(t)
2

− ξ(t)
2κ

]
θ2(L)

− 1
2

[
ξ(t)(1−τ′(t)−κk2(t))

]
z2(1,t) ≤0. (2.30)
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Proof. Multiplying the first and second equations of (2.19) by ut(x,t) and θ(x,t) respec-
tively, and integrating by parts on [0,L], we obtain

1
2

d
dt

∫ L

0
(au2

t +du2
x)dx=−

∫ L

0
βθxutdx, (2.31)

1
2

d
dt

∫ L

0
θ2dx+κ

∫ L

0
θ2

xdx+κk1(t)θ2(L)+κk2(t)θ(l)z(ρ,L)=
∫ L

0
βθxutdx. (2.32)

Multiply the third equation of (2.19) by ξ(t)z(ρ,t) and integrate by parts on [0,1], this
results in

τ(t)ξ(t)
∫ 1

0
zt(ρ,t)dρ=− ξ(t)

2

∫ 1

0
(1−τ′(t)ρ)

∂

∂ρ
z2(ρ,t)dρ, (2.33)

which leads to

d
dt

( ξ(t)τ(t)
2

∫ 1

0
z2(ρ,t)dρ

)
=

ξ ′(t)τ(t)
2

∫ 1

0
z2(ρ,t)dρ+

ξ(t)τ(t)
2

∫ 1

0

d
dt

z2(ρ,t)dρ (2.34)

with

ξ(t)τ(t)
2

∫ 1

0

d
dt

z2(ρ,t)dρ

=− ξ(t)
2

(1−τ′(t))z2(1,t)+
ξ(t)

2
z2(0,t)− ξ(t)

2
τ′(t)

∫ 1

0
z2(ρ,t)dρ. (2.35)

The above estimates imply that

E′(t)=−κ
∫ L

0
θ2

xdx−κk1(t)θ2(L)−κk2(t)θ(l)z(1,t)− ξ(t)
2

(1−τ′(t))z2(1,t)

− ξ(t)
2

θ2(L)− ξ(t)τ′(t)
2

∫ 1

0
z2dρ≤0 (2.36)

provided that (
1− aα

2

)
k1(t)−

ξ(t)
2κ

≥0, (2.37)

ξ(t)(1−τ′(t))−καk1(t)≥0, (2.38)

which are true from (2.29). The proof is complete.

Lemma 2.2 (Corollary of Hahn-Banach Theorem-See [30]). Let X be a Banach space, F⊂X
and F ̸=X, then there exists a functional ϕ∈X′, ϕ ̸=0 such that

<ϕ,x>=0, ∀ x∈F. (2.39)



Well-Posedness and Stability for Semilinear Thermoelastic System 43

Remark 2.4. Lemma 2.2 can be used to prove the subset F is dense in X, which only need
to consider a linear bounded functional ϕ satisfying ϕ=0 in F, and then prove ϕ=0 in X.

Using the semigroup theory and Theorem 2.1, we can obtain the global well-posedness
as following theorem.

Theorem 2.3. Assume that the initial data U0 ∈H, and hi(·)∈ L2(0,L) for i = 1,2. Then the
problem (1.1) possesses a unique global solution satisfying

U∈C([0,+∞);H) (2.40)

under the hypotheses (H1)-(H5).
Furthermore, if U0∈D(A(0)), then we have the regular solution

U∈C([0,+∞);D(A(0)))∩C1([0,+∞);H). (2.41)

Proof. Since the operator A(t) is non-autonomous, we can not use the framework of semi-
group to prove our result only. Combining perturbation theory of non-autonomous linear
operators by Kato with semigroup technique, we can derive the global well-posedness
by verifying Theorem 2.1 as following steps.

Step 1: D(A(0)) is dense in H and D(A(t))=D(A(0)).

Lemma 2.3. The domain D(A(0)) is dense in phase space H.

Proof. Let Û=(û,v̂, θ̂, ẑ)T ∈H be orthogonal to all elements of D(A(0)), which means

(U,Û)H=
∫ L

0
(duû+av̂vdx+bθθ̂)dx+ξ(t)τ(t)

∫ 1

0
zẑdρ=0 (2.42)

for U=(u,v,θ,z)T ∈D(A(0)). Taking u=v=θ=0 and z∈C∞
0 (0,1), as the following result

from (2.42) for U=(0,0,0,z)T ∈D(A(0)), therefore

ξ(t)τ(t)
∫ 1

0
ẑzdρ=0.

Since C∞
0 (0,1) is dense in L2(0,1) and ξ(t)τ(t)≥ 0 but not always zero, then it follows

ẑ=0 for all (ρ,t)∈ (0,1)×R+.
Similarly, taking u=v=z=0 for U=(0,0,θ,0)T∈D(A(0)), (2.42) and θ∈C∞

0 (0,L) lead
to ∫ L

0
bθθ̂dx=0,

which results in θ̂=0 because of C∞
0 (0,L) is dense in L2(0,L). Analogously, û=0 and v̂=0

can be obtained. Thus, by using Lemma 2.2, D(A(0)) is dense in H.
Noting that the operator A(t) independs on time t, this yields D(A(t))=D(A(0)).
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Step 2: The C0-semigroup in H is generated by perturbed operator Ã(t) for A(t).

Lemma 2.4. For an arbitrary fixed time t, the perturbed operator Ã(t) for A(t) generates a
C0-semigroup in H.

Proof. By using the Lumper-Phillips Theorem, we only need to prove the operator Ã(t)
satisfies dissipative and the maximal monotone properties, which is divided into the fol-
lowing procedures.

(1) Ã(t) is dissipative.
The time dependent inner produce of H is defined by〈

U,Ũ
〉

t
=
∫ L

0
(duû+av̂vdx+bθθ̂)dx+ξ(t)τ(t)

∫ 1

0
zẑdρ (2.43)

for U=(u,v,θ,z)T and Ũ=(ũ,ṽ, θ̃, z̃)T. Hence for

A(t)U=

(
v,

d
a

uxx−
β

a
θx,

κ

b
θxx−

β

b
vx,−1−τ′(t)ρ

τ(t)
zρ

)T

∈D(A(t))

and fixed time t>0, the inner product can be written and estimated as〈
A(t)U,U

〉
t
=
∫ L

0
(dvxux+(duxx−βθx)v+(κθxx−βvx)θ)dx

−ξ(t)τ(t)
∫ 1

0

1−τ′(t)ρ
τ(t)

zρzdρ

≤−κ
∫ L

0
θ2

xdx− ξ(t)τ′(t)
2

∫ 1

0
z2dρ−

(
κk1(t)−

ξ(t)
2

)
z2(0,t)

− ξ(t)(1−τ′(t))
2

z2(1,t)−κk2(t)z(0,t)z(1,t) (2.44)

with

−κk2(t)z(0,t)z(1,t)≤ k1(t)
κα

2
√

1−d
z2(0,t)+k1(t)

κα
√

1−d
2

z2(1,t),

which results in〈
A(t)U,U

〉
t
≤−κ

∫ L

0
θ2

xdx−
(

κk1(t)−
ξ(t)

2
−k1(t)

κα

2
√

1−d

)
z2(0,t)

−
[

ξ(t)(1−τ′(t))
2

− ξ(t)(1−τ′(t))
2

z2(1,t)− ξ(t)τ′(t)
2

]
z2(1,t)

+
ξ(t)|τ′(t)|

2τ(t)
τ(t)

∫ 1

0
z2(t,ρ)dρ. (2.45)
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The estimate (2.45) implies that 〈
Ã(t)U,U

〉
t
≤0 (2.46)

for Ã(t)=A(t)−κ̃(t)I with |τ′(t)|
2τ(t) ≤ κ̃(t)=

√
1+(τ′(t))2

2τ(t) , this means Ã(t) is dissipative.

(2) The maximal monotone property of Ã(t) and A(t).
The purpose is equivalent to prove the surjectivity of operator λI−A(t) for fixed t> 0
and some λ>0 from the Lumper-Phillips Theorem.

Let F = ( f1, f2, f3, f4)
T ∈H, by using the Lumper-Phillips Theorem, we only need to

seek a solution U=(u,v,θ,z)T ∈D(A(t)), such that

(λI−A(t))U=F, (2.47)

that is, U satisfies the following equations

λu−v= f1,
λav−duxx+βθx = a f2,

λbθ−κθxx+βvx =b f3,

λz+
1−ρτ′(t)

τ(t)
zρ = f4.

(2.48)

By virtue of the similar technique as in [8], the solution of fourth equation for (2.48) with
initial data z(t,0)= θ(L,t)= θ(L) can be written as

z(ρ,t)= θ(L)eσ(ρ,t)+τ(t)eσ(ρ,t)
∫ ρ

0

f4(x,s)
1−sτ′(s)

e−σ(s,t)ds for a fixed t and τ′(t) ̸=0.

(2.49)

where

σ(ρ,t)=λ
τ(t)
τ′(t)

ln(1−ρτ′(t)).

Otherwise, if τ′(t)=0,

z(ρ,t)= θ(L)e−λτ(t)ρ+τ(t)e−λτ(t)ρ
∫ ρ

0
f4(x,s)e−λτ(t)s ds for a fixed t. (2.50)

Choose ρ=1, one can derive

z(1,t)= θ(L)eσ(1,t)+τ(t)eσ(1,t)
∫ 1

0

f4

1−sτ′(t)
e−σ(s,t)ds= θ(L)eσ(1,t)+z0,

z(1,t)= θ(L)e−λτ(t)+τ(t)e−λτ(t)
∫ 1

0
f4e−λτ(t)sds= θ(L)e−λτ(t)+z1 (2.51)
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for τ′(t) ̸=0 and τ′(t)=0 respectively, where

z0=τ(t)eσ(1,t)
∫ 1

0

f4

1−sτ′(t)
e−σ(s,t)ds, z1=τ(t)e−λτ(t)

∫ 1

0
f4e−λτ(t)sds.

Suppose that u and v have some appropriate regularity, it yields that

v=λu− f1 (2.52)

and v∈ H1(0,L) from the first equation in (2.48). Then, the first three equations of (2.48)
can be rewritten as {

−duxx+λ2au+βθx = f ,
−κθxx+λbθ+λβux = f̃

(2.53)

with f = a f2+λa f1, f̃ =b f3+β( f1)x ∈L2(0,L).
The bilinear form of (2.53) for (u,θ),(ϕ,w) in V1×V2 is defined by

B((u,θ),(ϕ,w))=
∫ L

0

[
duxϕx+λ2auϕ+βθxϕ+κθxwx+λbθw+λβuxw

]
dx

+κk1(t)w(L)θ(L)+κk2(t)w(L)θ(L)eσ(1,t) (2.54)

and

B̃((u,θ),(ϕ,w))=
∫ L

0

[
duxϕx+λ2auϕ+βθxϕ+κθxwx+λbθw+λβuxw

]
dx (2.55)

+κk1(t)w(L)θ(L)+κk2(t)w(L)θ(L)e−λτ(t) (2.56)

for τ′(t) ̸=0 and τ′(t)=0 respectively.
Then, consider the variational problem

B((u,θ),(ϕ,w))=F ((ϕ,w)), (2.57)

B̃((u,θ),(ϕ,w))= F̃ ((ϕ,w)) (2.58)

with linear functionals form

F ((ϕ,w))=
∫ L

0

(
f ϕ+ f̃ w

)
dx+κk2(t)w(L)τ(t)eσ(1,t)

∫ 1

0

f4

1−sτ′(t)
e−σ(s,t)ds, τ′(t) ̸=0

and

F̃ ((ϕ,w))=
∫ L

0

(
f ϕ+ f̃ w

)
dx+κk2(t)w(L)τ(t)e−λτ(t)

∫ 1

0
f4e−λτ(t)sds, τ′(t)=0.

Clearly, B(w1,w2) is continuous and coercive in V1×V2 with the equipped norm

∥(u,θ)∥2=∥u∥2+∥ux∥2+∥θ∥2+∥θx∥2. (2.59)
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Indeed, since assumption (H1) guarantees that σ(1,t)= τ(t)
τ′(t) ln(1−τ′(t))< 0 holds, there

exists some λ=λ0>0 satisfies (λ0−1)2β2

2d ≤ λ0b
2 , such that the integration by parts results in

the coercive property

B((u,θ),(u,θ))=
∫ L

0

[
du2

x+λ2au2+βθxu+κθ2
x+λbθ2+λβuxθ

]
dx

+κk1(t)θ2(L)+κk2(t)θ2(L)eσ(1,t)

≥
∫ L

0

[d
2

u2
x+λ2

0au2+κθ2
x+

λ0b
2

θ2
]
dx+κk1(t)(1−α)θ2(L)

≥C1∥(u,θ)∥2 (2.60)

and

B̃((u,θ),(u,θ))=
∫ L

0

[
du2

x+λ2au2+βθxu+κθ2
x+λbθ2+λβuxθ

]
dx

+κk1(t)θ2(L)+κk2(t)θ2(L)e−λτ(t)

≥C1∥(u,θ)∥2. (2.61)

Therefore, by Lax-Milgram theorem, the problem (2.53) possesses a solution for (u,θ)∈
V1×V2, i.e., for any (ϕ,w) in the space C∞

0 (0,L)×C∞
0 (0,L) which is dense in V1×V2, the

variational forms (2.57) and (2.58) hold. Since F ((ϕ,w)),F̃ ((ϕ,w))∈L2(0,L), then we can
show that (u,θ) satisfy the boundary conditions and v=λu− f1∈V1. Consequently, from
the L2-theory of elliptic equations, the abstract problem (2.47) possesses a unique solution
U ∈ D(A(t)) for a fixed t> 0. Since the boundedness of κ̃(t)> 0, we can conclude that
A(t)−κ̃(t)I is surjective, which leads to Ã(t) is maximal for a fixed t>0. Then the proof
is complete.

Step 3: The stable property of Ã(t).

Lemma 2.5. The family of non-autonomous operators Ã(t) is stable in the phase space H for
t∈ [0,T].

Proof. For U=(u,v,θ,z)T∈H, by the theory of Kato as Theorem 2.1, we only need to verify
that

∥U∥t

∥U∥s
≤ e

l
τ0
|t−s| for all t, s∈ [0,T]. (2.62)

Let ∥U∥2
t = ∥(u,v,θ,z)∥2

H be the norm associated with inner product (2.24). Then, it
yields
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∥U∥2
t −∥U∥2

s e
l

τ0
|t−s|

=(1−e
τ̃1
τ0
(t−s)

)
[
∥ux∥2

2+∥ut∥2
2+∥θ∥2

]
+
(

ξ(t)τ(t)−ξ(s)τ(s)e
l

τ0
|t−s|

)∫ 1

0
z2(t)dρ

for s, t ∈ [0,T] and 0 ≤ s ≤ t ≤ T. The non-negative parameter l
τ0
|t−s| implies that 1−

e
l

τ0
(t−s)≤0. Hence, we only need to prove

ξ(t)τ(t)−ξ(s)τ(s)e
l

τ0
|t−s|≤0. (2.63)

Since τ(t)∈W2,∞([0,T]) ↪→C1([0,T]), it is easy to see that ρ(t) can be represented by

τ(t)=τ(s)+τ′(r)(t−s), r∈ (s,t).

Then by the monotone property ξ ′≤0 and ξ>0, we have

ξ(t)τ(t)≤ ξ(s)τ(s)+ξ(s)τ′(r)(t−s),

which results in

ξ(t)τ(t)
ξ(s)τ(s)

≤1+
|τ′(r)|
τ(s)

|t−s|≤1+
l

τ0
|t−s|≤ e

l
τ0
|t−s|

from (2.15) and (2.16). This shows that (2.62) is true. In addition, the trivial case for
∥U∥·≡0 holds obviously.

Hence, combining Lemma 2.4 and (2.62), we can conclude that Ã(t) is stable in H by
using Proposition 1.1 in [25].

Step 4: The uniform bounded of d
dt Ã(t).

Lemma 2.6. The uniform bounded d
dt Ã(t)∈L∞

∗ ([0,T],B(D(A(0)),H)) holds, here

L∞
∗ ([0,T],B(D(A(0)),H))

is the space of equivalent class of essentially boundedness, measurable functions from [0,T] to
B(D(A(0)),H), B(D(A(0)),H) is the set of all bounded linear functionals from D(A(0)) to
H.

Proof. Noting that

A(t)=



0 1 0 0
d
a

∂xx 0 −β

a
∂x 0

0 −β

b
∂x

κ

b
∂xx 0

0 0 0 −1−ρτ′(t)
τ(t)

∂

∂ρ


,
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we deduce that

d
dt

A(t)U=


0
0
0

ρτ(t)τ′′(t)−τ′(t)(ρτ′(t)−1)
τ2(t)

zρ

 (2.64)

is also bounded for t∈R+ because ρτ(t)τ′′(t)−τ′(t)(ρτ′(t)−1)
τ2(t) is bounded on [0,T] from (2.15)-

(2.16). Hence, (2.64) results in the boundedness of

d
dt

Ã(t)U=
( d

dt
A(t)−κ̃′(t)

)
U

for U∈D(A(0)) and t∈R+ because

κ̃′(t)=
τ′(t)τ′′(t)

2τ(t)
√

1+(τ′(t))2
+

τ′(t)
√

1+(τ′(t))2

2τ2(t)

is bounded from (2.15)-(2.16), where κ̃(t)=
√

1+(τ′(t))2

2τ(t)
.

The proof of this lemma is complete.

Step 5: The local mild solution Some lemmas are needed to verify the local existence of
mild solution for our problem.

Lemma 2.7. Assume the hypotheses (H1)-(H5) hold. Let {Λ(t)}=−{A(t)} be a unbounded
operators family in H. Then, {Λ(t)} is stable, which also Lipschitz in D(A(t)).

Proof. By the definition of Ã(t) =A(t)−κ(t)I with appropriate κ(t) such that Ã(t) is
positive and self-adjoint, we can obtain that Ã(t) from Lemma 2.5. Noting that the per-
turbation of A(t) is linear, using the technique in [27], we conclude that A(t) is stable in
H.

Since the perturbation is linear, for fixed U∈D(A(t)), we have

∥[A(t)−A(s)]U∥D((A)(t))≤
(
(1−ρ2)l+ l̃τ1

τ2
0

)
|t−s|∥U∥H, (2.65)

which implies the Lipschitz property.

Lemma 2.8. Assume the hypothesis (H4) holds. Then, the non-autonomous nonlinear term
H(u,θ) are Lipschitz in H. Moreover, the term H(u,θ) is also uniform bounded in H.

Proof. From (2.12) in assumption (H3), by virtue of the similar technique of Propositions
2.7 and 2.8 in [27], the Lipschitz continuity and uniform boundedness of H(u,θ) in H can
be derived easily.
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Lemma 2.9. Assume that the initial data U0 ∈H, and hi(·) ∈ L2(0,L) for i = 1,2. Then the
problem 

dU
dt

=A(t)U+H(u,θ),

U(0)=U0,
(2.66)

possesses a local solution in H under the hypotheses (H1)-(H5).

Proof. Combining the Lemmas 2.7-2.8, using the Theorems 2.1 and 2.2, we can conclude
the local existence of mild solution.

Step 6: The global mild solution
(1) The energy of problem should be redefined as (2.27) which is important to extend local
solutions. Using the similar technique as in Lemma 2.1, the energy E(t) is non-increasing
along any solution U(t) which satisfies that there exist C0>0, such that

∥U(t)∥2
H≤C0,h1,h2(E(t)+1), for all t≥0. (2.67)

(2) From Lemmas 2.3-2.6 and Kato’s theory of operator perturbation, the abstract Cauchy
problem 

dŨ
dt

= Ã(t)Ũ,

Ũ(0)=U0

(2.68)

has a unique solution

Ũ(t)= e
∫ t

0 Ã(s)dsU0∈C([0,T],D(A(0)))∩C1([0,T],H).

Hence, U(t)= e
∫ t

0 κ(s)dsŨ(t) is the solution of problem
dU
dt

=A(t)U,

U(0)=U0,
(2.69)

because of
d
dt

U(t)=κ(t)e
∫ t

0 κ(s)dsŨ(t)+e
∫ t

0 κ(s)ds d
dt

Ũ(t)

=e
∫ t

0 κ(s)ds(κ(t)I+Ã(t))Ũ(t)=A(t)U(t).

Consider the non-homogeneous problem (2.66). Then, the unique mild solution of (2.66)
can be computed as

U(t)= e
∫ t

0 A(s)dsU0+
∫ t

0
e
∫ t−s

0 A(σ)dσ H(u,θ)ds, for t∈ (0,tmax) (2.70)

from (2.69), the estimate (2.67) and Lemmas 2.7-2.9 guarantee that the local solution can
be extended to global solution.

The proof is completed.
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3 Uniform stability and dynamics

3.1 The theory of quasi-stability and finite-dimensional attractors

In this section, the theory of finite dimensional global and exponential attractors will be
presented for preparation, which are originated from Chueshov and Lasiecka [22].

Definition 3.1 (Chueshov and Lasiecka [22]). A dynamics system (X,S(t)) is called gra-
dient system if there exists a Lyapunov functional Φ satisfies
(1) Φ(S(t)U) is non-increasing with respect to t≥0 for any U∈X.
(2) The stationary points of Φ are fixed points of S(t), i.e., Φ(S(t)z)=Φ(z) for all t.

Definition 3.2 (Chueshov and Lasiecka [22]). The dynamic system (X,S(t)) is called
quasi-stable on a set B⊂X if there exists a compact semi-norm nX on X, and nonnegative
scalar functions a(t), c(t) are locally bounded on [0,∞), b(t)∈L1(R+) and limt→∞ b(t)=0,
such that

∥S(t)U1−S(t)U2∥2
X ≤ a(t)∥U1−U2∥2

X (3.1)

and
∥S(t)U1−S(t)U2∥2

X ≤b(t)∥U1−U2∥2
X+c(t) sup

0<s<t
[nX(u1(s)−u2(s))]2 (3.2)

for U1, U2 ∈B.

Theorem 3.1 (Chueshov and Lasiecka [22]). Let (X,S(t)) be a gradient system and suppose
that the system is quasi-stable on every bounded positively invariant set B⊂X. Then (X,S(t)) has
a global attractor A=M+(N ) with finite fractal dimension, here N is the set of equilibrium for
S(t), M+(N ) is the unstable manifold for N . Moreover, the generalized finite fractal dimensional
exponential attractor also exists under suitable condition for S(t).

3.2 Gradient system

Based on the global well-posedness in Theorem 2.3, under the hypotheses (H1)-(H5), the
solution for problem (2.19) generates a dynamic system (H,S(t)), where S(t) :H→H is
a solution semigroup. In this section, we will prove that (H,S(t)) is a gradient system,
which possesses a Lyapunov functional.

Lemma 3.1. For U0=(u0,u1,θ0, f0)T ∈H, the dynamic system (H,S(t)) is a gradient system.

Proof. The existence of Lyapunov functional is E(t). Denote Φ(S(t)U)= E(t) along the
solution trajectory S(t)U=(u(t),v(t),θ(t),z(t))T, which is non-increasing with respect to
t from Lemma 2.1, assume

Φ(S(t)U0)=S(t)U0
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for all t≥0 and U0=(u0,u1,η0, f0)T ∈H. Then E′(t)=0 implies

−κ
∫ L

0
θ2

xdx− ξ(t)τ′(t)
2

∫ 1

0
z2dρ−κ

[
k1(t)−

k2(t)
2

− ξ(t)
2κ

]
θ2(L)

− 1
2

[
ξ(t)(1−τ′(t)−κk2(t))

]
z2(1,t)=0. (3.3)

Since every term on the LHS of (3.3) is non-positive, we can conclude that

U0=S(t)(0,θ0,0,0)T =(0,θ0,0,0)T

is the fixed point. Then, (H,S(t)) is a gradient system.

3.3 Asymptotic stability and quasi-stability

In this section, the quasi-stability is given by multiplier approach, then the uniform sta-
bility can be obtained by the similar technique.

• Quasi-stability

Theorem 3.1. The dynamic system (H,S(t)) has the property of quasi-stability on a set B⊂H
as in Definition 3.2 under the hypotheses (H1)-(H5).

Proof. Suppose that Ui=(ui,vi,θi,zi)
T(i=1,2) are two solutions of the problem (2.19) with

initial data Ui0=(ui0,ui1,θi0, fi0)
T, let Ū=U1−U2=(ū,v̄, θ̄, z̄) be the difference with initial

data U0=(ū0,ū1, θ̄0, f̄0)T. Then it is easy to check that Ū satisfies

aūtt−dūxx+βθ̄x+(h1(u1)−h1(u2))=0,
bθ̄t−κθ̄xx+βūxt+(h2(θ1)−h2(θ2))=0,
τ(t)z̄t(ρ,t)+(1−ρτ′(t))z̄ρ(ρ,t)=0, in (0,1)×R+,
ūx(0,t)= ū(L,t)= θ̄(0,t)=0, t≥0,
θ̄x(L,t)+k1(t)z̄(0,t)+k2(t)z̄(1,t)=0, t≥0,
ū(x,0)= ū0(x), ūt(x,0)= ū1(x), θ̄(x,0)= θ̄0(x), t≥0,
θ̄(L,t−τ(0))= f̄0(L,t−τ(0)), in (0,L)×(0,τ(0)).

(3.4)

The energy functional for problem (3.4) is defined as

G(t)=
1
2

∫ L

0
(aū2

t +dū2
x+bθ̄2)dx+

ξ(t)τ(t)
2

∫ 1

0
z̄2(ρ,t)dρ,

which is non-increasing and equivalent to the norm ∥U1−U2∥2
H because of (2.28)-(2.29)

by using the similar technique as in Lemma 2.1, i.e., there exist C3, C4>0, such that

C3∥U1−U2∥2
H≤G(t)≤C4∥U1−U2∥2

H.

Hence, the inequality (3.1) holds. Next, we only need o to prove (3.2) in Definition 3.2 as
the following Lemma 3.2, which is the key point here.
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Lemma 3.2. Let U1, U2 be two solutions of problem (2.19) with initial data U10, U20 in bounded
subset B⊂H. Then there exist positive constants γ, B0, B1, depending only on B, such that

∥U1−U2∥2
H≤B0e−γt∥U10−U20∥2

H+B1 sup
0<s<t

∥u1(s)−u2(s)∥2
4. (3.5)

Proof. The proof can be transformed into the estimate of G(t) because G(t) and ∥U1−
U2∥2

H are equivalent, which is divided into the following lemmas by using multiplier
method.

Lemma 3.3. Define the functional ϕ(t) as

ϕ(t)= a
∫ L

0
ūt(t)ū(t)dx.

Then, there exists a constant m0>0, such that

ϕ′(t)≤− d
2

∫ L

0
ū2

xdx+
βΛ̃
2d

∫ L

0
θ̄2

xdx+a
∫ L

0
ū2

t dx+C̄h1∥ū∥2
L4 . (3.6)

Proof. Noting that,

ϕ′(t)= a
∫

Ω
ūttūdx+a

∫ L

0
ū2

t dx

and the estimate ∫ L

0
aūttūdx=

∫ L

0
(dūxx−βθ̄x+(h1(u1)−h1(u2)))ūdx

≤− d
2

∫ L

0
ū2

xdx+
βΛ̃
2d

∫ L

0
θ̄2

xdx+C̄h1∥ū∥2
L4 (3.7)

is true from hypothesis (H3) and the global well-posedness, we can derive the desired
result.

Lemma 3.4. Define the functional φ(t) as

φ(t)=−ab
∫ L

0
θ̄
∫ x

0
ūt(s,t)dsdx.

Then there exist parameters m1>0 and m2>0, such that

φ′(t)≤−m1

2

∫ L

0
ū2

t dx+2δ
∫ L

0
ū2

xdx+m2

∫ L

0
θ̄2

xdx+Cε[k2
1(t)θ̄

2(L,t)+k2
2(t)z̄

2(1,t)]. (3.8)
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Proof. The simple computation yields

φ′(t)=−aβ
∫ L

0
ū2

t dx+bβ
∫ L

0
θ̄2dx−bd

∫ L

0
θ̄ūxdx+aκ

∫ L

0
θ̄xūtdx

+aκ
(

k1(t)θ̄(L,t)+k2(t)z̄(1,t))
)∫ L

0
ūtdx

+a
∫ L

0
(h2(θ1)−h2(θ2))dx

∫ L

0
ūtdx

+b
∫ L

0
θ̄
∫ x

0
(h1(u1)−h1(u2))dsdx.

Noting that the estimates

a
∫ L

0
(h2(θ1)−h2(θ2))dx

∫ L

0
ūtdx≤ m1

2
∥ūt∥2+aLC̃1∥θ̄∥2

L4 , (3.9)

b
∫ L

0
θ̄
∫ x

0
(h1(u1)−h1(u2))dsdx≤δ∥ūx∥2+bLCδC̃2∥θ̄∥2

L4 (3.10)

are true from hypothesis (H3), using the embedding H1(0,L) ↪→ L4(0,L), we can arrive
the desired estimate (3.8) by the Poincaré and Young inequalities.

To perturb the fourth term in G(t) for using the multiplier approach, the functional
J(t) and perturbed energy G̃(t) can be defined as

J(t)= ξ̄τ(t)
∫ 1

0
e−τ(t)ρ z̄2(ρ,t)dρ,

G̃(t)=N1G(t)+ϕ(t)+ε1φ(t)+ J(t),

where N1 is sufficiently large and ε1 is an appropriate small parameter.
The estimate of J(t) is given in following lemma.

Lemma 3.5. There exists a parameter CJ >0 such that the estimate

J′(t)≤− ξ̄(1−τ′(t))e−τ(t)z̄2(1,t)+ ξ̄ θ̄2(L,t)−CJ ξ̄
∫ 1

0
z̄2(ρ,t)dρ (3.11)

holds for ξ̄>0.

Proof. The estimate of J′(t) can be proceeded by

J′(t)=ξ̄
∫ 1

0

d
dt

(τ(t)e−ρτ(t))z̄2(ρ,t)dρ+ ξ̄
∫ 1

0

d
dρ

((1−ρτ′(t))e−ρτ(t))z̄2(ρ,t)dρ

− ξ̄(1−τ′(t))e−τ(t)z2(1,t)+ ξ̄ z̄2(0,t).
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Since

d
dt

(τ(t)e−ρτ(t))+
d

dρ
((1−ρτ′(t))e−ρτ(t))=−2τ(t)e−ρτ(t)<0, (3.12)

this lemma holds from choosing appropriate parameter CJ >0.

The equivalence of G(t) and G̃(t) shall be illustrated as following.

Lemma 3.6. For large enough M1 and M2, small sufficient ε, there exist K1,K2>0, such that

K1G(t)≤ G̃(t)≤K2G(t).

Proof. By the Hölder and Young inequalities, it is easy to check the equivalence in this
lemma.

• Proof of Lemma 3.2: From Lemmas 3.3-3.5, one can derive

G̃′(t)=N1G′(t)+ϕ′(t)+ε1φ′(t)+ J′(t)

≤−
(

κN1−
βΛ̃
2d

−m2ε1

)∫ L

0
θ̄2

xdx−
( ξ(t)τ′(t)N1

2
+CJ ξ̄

)∫ 1

0
z̄2dρ

−
{N1

2

[
ξ(t)(1−τ′(t))−καk1(t)

]
+ ξ̄(1−τ′(t))e−τ(t)−Cεε1α2k2

1(t)
}

z̄2(1,t)

−
(d

2
−δε1

)∫ L

0
ū2

xdx−
(

m1ε1−a
)∫ L

0
ū2

t dx

−
{

κN1

[
k1(t)−

aαk1(t)
2

− ξ(t)
2κ

]
− ξ̄−Cεε1k2

1(t)
}

θ̄2(L,t)+M(t), (3.13)

where M(t)= C̄h1∥ū∥2
L4 .

Suppose that N1 is large enough, choose appropriate ε1 and δ>0 small enough, it is
easy to check that

κN1−
βΛ̃
2d

−m2ε1>0,

N1

2

[
ξ(t)(1−τ′(t))−καk1(t)

]
+ ξ̄(1−τ′(t))e−τ(t)−Cεε1α2k2

1(t)>0,

d
2
−δε1>0, m1ε1−a>0.

For our purpose, we only need

κN1

[
k1(t)−

aαk1(t)
2

− ξ(t)
2κ

]
− ξ̄−Cεε1k2

1(t)>0,

i.e., (1− aα
2 )k1(t)− ξ(t)

2κ >0 is guaranteed by (2.37). Then, all coefficients on RHS of (3.13)
except M(t) are negative.
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Hence, there exists K3>0, such that

G̃′(t)≤−K3G(t)+M(t),

which results in

G̃′(t)≤−K3

K1
G̃(t)+M(t) (3.14)

for all t≥0 by Lemma 3.6. Apply Gronwall’s lemma to (3.14), it yields

G̃(t)≤ G̃(0)e−
K3
K1

t
+
∫ t

0
e−

K3
K1

(t−s)M(s)ds,

which leads to

G(t)≤K2

K1
G(0)e−

K3
K1

t
+

K1C̄h1

K3
sup

0<s<t
∥ū∥2

L4 .

By the uniform boundedness of U in H, and the equivalence between G(t) and ∥U1−
U2∥2

H, we conclude that

∥U1−U2∥2
H≤ C4K2

K1
e−

K3
K1

t∥U10−U20∥2
H+

K1C̄h1

C3K3
sup

0<s<t
∥u1(s)−u2(s)∥2

4

for all t≥0, which results in the quasi-stability of Lemma 3.2. □

• Uniform asymptotic stability

Theorem 3.2. Suppose that U0 = (u0,u1,θ0, f0)T ∈H. Then there exists Ĉ > 0, such that the
uniform asymptotic stability

∥U(t)∥2
H=∥(u,ut,θ,z)∥2

H≤ Ĉ(1+∥(u0,u1,θ0, f0)∥4
H)

for semilinear problem (2.19) holds under the hypotheses (H1)-(H5).

Proof. From Lemma 2.1, there exist positive constants Υ>0 and Či >0 for i=1,2, we can
see that E′(t)≤0 and

Υ∥U∥2
H−Č1≤E(t)≤ Č2(1+∥U∥4

H)

for U=(u(t),ut(t),θ(t),z(t))T ∈H and t≥0.
Define the functionals as

ϕ1(t)= a
∫ L

0
ut(t)u(t)dx,

φ1(t)=−ab
∫ L

0
θ
∫ x

0
ut(s,t)dsdx,
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J1(t)= ξ̄τ(t)
∫ 1

0
e−τ(t)ρz2(ρ,t)dρ,

let
Ẽ(t)=N2E(t)+ϕ1(t)+ε2φ1(t)+ J1(t),

which is equivalent to E(t) for sufficiently large N2 and appropriate small ε> 0, use the
similar multiplier technique as in Theorem 3.1, we can achieve

Ẽ′(t)≤−Č3E(t)+Č4.

Combining the equivalence of Ẽ(t) and E(t), by using Gronwall’s lemma, we can con-
clude that there exists Č>0, such that

∥(u(t),ut(t),θ(t),z(t))∥2
H≤ Č(1+∥(u0,u1,θ0, f0)∥4

H)

for t≥0 and U0∈H. The proof is complete.

3.4 Dynamics

In this subsection, the existence of global and exponential attractors can be obtained by
virtue of uniform asymptotic stability and the quasi-stability of gradient system, which
leads to the asymptotic smoothness.

Theorem 3.3. Assume that U0 = (u0,u1,θ0, f0)T ∈H and hypothesis (H1)-(H5) hold. Then
the gradient system (H,S(t)) for the problem (2.19) possesses a finite fractal dimensional global
attractor A⊂H, which is consisted by the unstable manifold Mu(N ), where N is the set of
stationary points.

Moreover, the exponential attractor Aexp ⊂H with finite fractal dimension for (H,S(t)) is
also obtained for our gradient system.

Proof. In order to use Theorems 2.1 to attain the existence of global attractors for problem
(2.19), the proof is divided into three steps.

Step 1: A suitable Lyapunov functional has been defined, which results in the dynamical
system (H,S(t)) is gradient.

Step 2: Note that ∥·∥4 is a compact semi-norm in H1
0(Ω) because of H1

0(Ω) ↪→↪→ L4(Ω),
then the quasi-stability is presented in Theorem 3.1, which guarantees (H,S(t)) is asymp-
totically smooth.

Step 3: Suppose that U(t)=(u(t),ut(t),θ(t),z(t))T is the stationary solution for problem
(2.19), which satisfies{

−duxx+βθx+h1(u)=0, in (0,L)×(0,∞),
−κθxx+h2(θ)=0, in (0,L)×(0,∞).

(3.15)
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Then

d∥ux∥2
2+κ∥θx∥2

2+
∫ L

0
h1(u)udx+

∫ L

0
h2(θ)θdx≤−β

∫ L

0
uθxdx.

Since ∫ L

0
h1(u)udx≥−ℓ0Λ̃∥u∥2−ρh1 L,∫ L

0
h2(θ)θdx≥−ℓ0Λ̃∥θ∥2−ρh2 L,

there exists a positive constant C′=C′(L,ℓ0,d,κ,Λ̃,β,ρhi), such that

d∥ux∥2
2+κ∥θx∥2

2≤C′,

which implies all stationary solutions are uniformly bounded in H.
The estimate (2.67) implies that ∥U∥H →∞ leads to Φ(S(t)U)→∞. Conversely, the

estimates in uniform stability implies ∥U∥H→∞ as Φ(S(t)U)→∞.
Hence, the set of stationary solutions for problem (2.19) is bounded in H. In addition,

Φ(S(t)U)→∞ if and only if ∥U∥H→∞.
In conclusion, all conditions of Theorem 3.1 have been satisfied, the results for dy-

namic systems of our problem is obtained.

4 Further research and comments

From the well-psedness, stability and dynamics in above sections, we can conclude that
the therapy procedure is valid from theory viewpoint. However, there are many fac-
tors influencing the therapy process because of the complexity for human body, such as
randomness. In the mathematical modeling, the general/degenerate memory and delay
on velocity/displacement are also important for the therapy effect, which are interesting
topics in application of mathematics.
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