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Abstract. In this paper, we study the following coupled nonlinear logarithmic Hartree
system 

−∆u+λ1u=µ1

(
− 1

2π
ln|x|∗u2

)
u+ β

(
− 1

2π
ln|x|∗v2

)
u, x∈R2,

−∆v+λ2v=µ2

(
− 1

2π
ln|x|∗v2

)
v+ β

(
− 1

2π
ln|x|∗u2

)
v, x∈R2.

where β,µi,λi (i = 1,2) are positive constants, ∗ denotes the convolution in R2. By
considering the constraint minimum problem on the Nehari manifold, we prove the
existence of ground state solutions for β > 0 large enough. Moreover, we also show
that every positive solution is radially symmetric and decays exponentially.
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1 Introduction

The time-dependent system of coupled nonlinear Hartree system can be written as fol-
lows:{

−i∂tΨ1=∆Ψ1+µ1
(
K(x)∗|Ψ1|2

)
Ψ1+β

(
K(x)∗|Ψ2|2

)
Ψ1, (t,x)∈R+×RN ,

−i∂tΨ2=∆Ψ2+µ2
(
K(x)∗|Ψ2|2

)
Ψ2+β

(
K(x)∗|Ψ1|2

)
Ψ2, (t,x)∈R+×RN ,

(1.1)

where Ψj : R+×RN →C, i is the imaginary unit, µ1,µ2 ̸= 0, and β ̸= 0 is a coupling con-
stant which describes the scattering length of the attractive or repulsive interaction, K(x)
is a response function which possesses information on the mutual interaction between
the particles. This system (1.1) appears in several physical models, for instance binary
mixtures of Bose–Einstein condensates, or the propagation of mutually incoherent wave
packets in nonlinear optics (see [1–4]). And if ones want to know more about the phys-
ical background and mathematical derivation of Hartree’s theory in the case of a single
equation, we refer readers to [5, 6] and the references therein.

It is well-known that (Ψ1(t,x),Ψ2(t,x)) :=(eiλ1tu(x),eiλ2tv(x)) is a solitary wave solu-
tion of system (1.1) if and only if (u,v) solve the following elliptic system{

−∆u+λ1u=µ1
(
K(x)∗u2)u+β

(
K(x)∗v2)u, in RN ,

−∆v+λ2v=µ2
(
K(x)∗v2)v+β

(
K(x)∗u2)v, in RN .

(1.2)

If the response function is the delta function, i.e., K(x) = δ(x), then (1.2) turns to the
following coupled nonlinear Schrödinger system{

−∆u+λ1u=µ1u3+βv2u, in RN ,
−∆v+λ2v=µ2v3+βu2v, in RN .

(1.3)

For the system (1.3), there are some significant progress on the multiplicity and properties
of solutions, see [7–16] and the references therein.

One can see that the fundamental solution to the Laplace operator can be denoted as
follows:

ΓN(x)=


− 1

2π
ln(|x|), N=2;
1

N(N−2)wN
|x|2−N , N≥3,

where wN is the volume of the unit ball in RN . If K(x)= ΓN(x) and N ≥ 3, then system
(1.2) can be written as

−∆u+λ1u=µ1

(∫
RN

u2(y)
|x−y|N−2 dy

)
u+β

(∫
RN

v2(y)
|x−y|N−2 dy

)
u, in RN ,

−∆v+λ2v=µ2

(∫
RN

v2(y)
|x−y|N−2 dy

)
v+β

(∫
RN

u2(y)
|x−y|N−2 dy

)
v, in RN ,

(1.4)
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which is a nonlocal problem and has been studied extensively (xw [17–20]).
If K(x)=ΓN(x) and N=2, then system (1.2) becomes the following problem

−∆u+λ1u=µ1

(
− 1

2π
ln(|x|)∗u2

)
u+β

(
− 1

2π
ln(|x|)∗v2

)
u, in R2,

−∆v+λ2v=µ2

(
− 1

2π
ln(|x|)∗v2

)
v+β

(
− 1

2π
ln(|x|)∗u2

)
v, in R2.

(1.5)

When β=0, studying (1.5) is equivalent to studying the following Schrödinger–Poisson
system

−∆u+λu+µ
(∫

R2

1
2π

ln(|x−y|)u2(y)dy
)

u=0, in R2. (1.6)

Since the integral kernel ln(|x|) is sign–changing in R2, system (1.6) attracts many re-
searchers’ attention [21–29]. To study system (1.6), Stubble [29] first set up a variational
framework and proved that if λ≥0 and µ>0, then the system (1.6) has a unique ground
state solution, which is a positive spherically symmetric decreasing function. Later, Bon-
heure, Cingolani and Van Schaftingen [22] proved the nondegeneracy and the exponen-
tial decay property of the unique ground state solution to (1.6) with λ>0,µ=1. Cingolani
and Weth [26] considered system (1.6) with a local nonlinear term, i.e.,

−∆u+λu+
(∫

R2

1
2π

ln(|x−y|)u2(y)dy
)

u=b|u|p−2, in R2, (1.7)

where b≥0, p>2 and λ∈ L∞(R2), and proved that if p≥4, then the problem (1.7) has a
sequence of solution pairs ±u and a ground sate solution. In addition, the authors also
showed that every positive solution is radially symmetric and monotonically decreasing
for p > 2 and λ > 0 by moving plane method. Later on, Du and Weth [27] studied the
case of 2< p < 4 and λ = 1, and proved the existence of ground state solutions and in-
finitely many nontrivial sign–changing solutions. In [24, 25], Chen and Tang considered
a more general case related to (1.7) with axially symmetric potential function and general
local nonlinearities, and found a ground state solution in the axially symmetric functions
space. Recently, Bernini and Mugnai [21] studied the existence of radially symmetric
solutions for (1.6) with a local nonlinear term, which does not satisfy the Ambrosetti-
Rabinowitz condition.

Motivated by the above mentioned papers, here we want to discuss the existence of
positive ground stated solutions and the properties of positive solutions to (1.5) with
β,λi,µi >0(i=1,2). The energy functional corresponding to (1.5) is defined by

J (u,v)=
1
2

∫
R2

(
|∇u|2+|∇v|2+λ1u2+λ2v2)dx+

1
4

A0(u,v), (1.8)

where

A0(u,v) :=
∫

R2

∫
R2

1
2π

ln(|x−y|)
(
µ1u2(x)u2(y)+µ2v2(x)v2(y)+2βu2(x)v2(y)

)
dxdy.
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Note that J is not well-defined on H1(R2)×H1(R2) even if β,λi,µi >0(i=1,2). Inspired
by [26, 29] , we define a smaller Hilbert space

X :=
{
(u,v)∈H :

∫
R2

(
ln(1+|x|)u2+ln(1+|x|)v2)dx<∞

}
, (1.9)

equipped with the norm

∥(u,v)∥2
X :=

∫
R2

(
|∇u|2+|∇v|2+λ1u2+λ2v2)dx+

∫
R2

(
ln(1+|x|)u2+ln(1+|x|)v2)dx,

where H :=H1(R2)×H1(R2), endowed with the norm

∥(u,v)∥2
H :=

∫
R2

(
|∇u|2+|∇v|2+λ1u2+λ2v2)dx.

Due to the Hardy-Littlewood-Sobolev inequality and the following decomposition

ln(|x−y|)= ln(1+|x−y|)−ln
(

1+
1

|x−y|

)
,

we have that J is well-defined and of class C1 on X. Moreover, any critical point of J in
X corresponds to a solution of (1.5).

Before stating our result, we give some definitions. A solution (u,v) of (1.5) is called a
nontrivial solution if u ̸=0 and v ̸=0, and a nontrivial solution (u,v) is positive if u>0,v>0.
Moreover, we say a solution (u,v) of (1.5) is a ground sate solution if (u,v) is nontrivial
and J (u,v)≤J (ϕ,ψ) for any other nontrivial solution (ϕ,ψ) of (1.5).

Our first result can be stated as follows:

Theorem 1.1. Assume that β,λi,µi>0(i=1,2). Then every positive solution (u,v)∈X of (1.5)
is radially symmetric and monotonically decreasing. In particular, u and v decrease exponentially.

We note that Wang and Shi [18] showed the radial symmetry and the monotonic de-
creasing of positive solutions to (1.4) for the case N = 3 and β,λi,µi > 0(i = 1,2). Their
approach relies on the moving plane method of the integral form. The methods of [18]
can apply to a general class of integral equations, but they can not be applied to (1.5)
since Γ2(x) =− 1

2π ln(|x|) is sign–changing. Inspired by [26], we use a more direct and
simpler variant of the moving plane method to prove Theorem 1.1.

To obtain a positive ground state solution of (1.5), we define

N :={(u,v)∈X\{(0,0)} : N(u,v)=0}, (1.10)

c := inf
(u,v)∈N

J (u,v), (1.11)

and

β1 :=
µ1
(
∥∇u1∥2

2+λ2∥u1∥2
2
)

∥∇u1∥2
2+λ1∥u1∥2

2
, β2 :=

µ2
(
∥∇u2∥2

2+λ1∥u2∥2
2
)

∥∇u2∥2
2+λ2∥u2∥2

2
, (1.12)
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where

N(u,v) :=
〈
J ′(u,v),(u,v)

〉
=
∫

R2

(
|∇u|2+|∇v|2+λ1u2+λ2v2)dx+A0(u,v),

λi,µi>0(i=1,2) and ui is the unique ground sate solution of (1.6) with (λ,µ)=(λi,µi) (i=
1,2).

Our results on the existence of positive ground state solutions to (1.5) are stated in the
following Theorem.

Theorem 1.2. Assume that β,λi,µi > 0(i= 1,2). If β>max{β1,β2}, then system (1.5) has a
positive ground state solution (u0,v0) in X, where β1 and β2 are defined in (1.12).

To obtain a ground sate solution of (1.5), we need to overcome some difficulties. First,
since the integral kernel Γ2(x)=− 1

2π ln(|x|) is sign–changing, we decompose ln(|x|) into
ln(1+|x|) and −ln(1+ 1

|x| ). Then, to make the corresponding functional sense, we intro-
duce a new smaller working Space X, which is defined by (1.9). Finally, by studying the
constraint minimum problem c=inf(u,v)∈N J (u,v) on the Nehari manifold restricted to X,
we obtain the existence of positive ground state solutions of (1.5). Moreover, it is worth
noticing that we also need to prove that N ∈C1 is a natural constraint and eliminate the
semi–trivial solutions in the processing of proving Theorem 1.2.

The paper is organized as follows. The variational setting and preliminaries will be
given in Section 2. Section 3 will devote to the proof of Theorem 1.2. In Section 4, we will
complete the proof of Theorem 1.1.

2 Variation framework and preliminaries

For convenience, we introduce the following notations.

• A new Hilbert space

X1 :=
{

u∈H1(R2) :
∫

R2
ln(1+|x|)u2dx<∞

}
with the norm

∥u∥2
X1

:=
∫

R2

(
|∇u|2+u2)dx+

∫
R2

ln(1+|x|)u2dx;

• The standard norm in Lp(R2) (1≤ p<∞) is denoted by

∥u∥p :=
(∫

R2
|u|pdx

) 1
p

;



66 Q. H. He, Y. F. Li and Y. F. Peng/ J. Partial Diff. Eq., 38 (2025), pp. 61-79

• Lp(R2)×Lp(R2) (1≤ p<∞) denotes the Lebesgue space with the norm

∥(u,v)∥p :=
(
∥u∥p

p+∥v∥p
p
) 1

p ;

• For any u∈H1(R2), ∥u∥2
∗ :=

∫
R2

ln(1+|x|)u2dx;

• C, C1, C2,··· stand for positive constants possibly different in different places.

We define the following symmetric bilinear forms

(u,v) 7→ I1(u,v) :=
∫

R2

∫
R2

1
2π

ln(1+|x−y|)u(x)v(y)dxdy;

(u,v) 7→ I2(u,v) :=
∫

R2

∫
R2

1
2π

ln
(

1+
1

|x−y|

)
u(x)v(y)dxdy;

(u,v) 7→ I0(u,v) := I1(u,v)− I2(u,v)=
∫

R2

∫
R2

1
2π

ln(|x−y|)u(x)v(y)dxdy;

(u,v) 7→Bi(u,v) :=µ1 Ii(u,u)+µ2 Ii(v,v)+2βIi(u,v), i=0,1,2.

(2.1)

Since 0 ≤ ln(1+r)≤ r for r ≥ 0, by Hardy-Littlewood-Sobolev inequality (Theorem 4.3
of [30]), we have that

I2(u,v)≤ 1
2π

∫
R2

∫
R2

1
|x−y|u(x)v(y)dxdy≤C0∥u∥ 4

3
∥v∥ 4

3
, ∀u,v∈L

4
3 (R2), (2.2)

with a constant C0>0. Also, we define the functionals:

A1 : H1(R2)×H1(R2)→ [0,∞], A1(u,v) :=B1(u2,v2);

A2 : L
8
3 (R2)×L

8
3 (R2)→ [0,∞), A2(u,v) :=B2(u2,v2);

A0 : H1(R2)×H1(R2)→R∪{∞}, A0(u,v) :=B0(u2,v2).

(2.3)

From (2.2), we deduce that

A2(u,v)=µ1 I2(u2,u2)+µ2 I2(v2,v2)+2βI2(u2,v2)

≤C0(µ1+β)∥u∥4
8
3
+C0(µ2+β)∥v∥4

8
3
, ∀(u,v)∈L

8
3 (R2)×L

8
3 (R2). (2.4)

Since

ln(1+|x−y|)≤ ln(1+|x|+|y|)≤ ln(1+|x|)+ln(1+|y|), ∀x,y∈R2,

one has

I1(uv,ϕψ)≤
∫

R2

∫
R2

1
2π

(ln(1+|x|)+ln(1+|y|))|u(x)v(x)||ϕ(y)ψ(y)|dxdy
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≤ 1
2π

(∥u∥∗∥v∥∗∥ϕ∥2∥ψ∥2+∥u∥2∥v∥2∥ϕ∥∗∥ψ∥∗), ∀(u,ϕ),(v,ψ)∈X, (2.5)

which implies that, for any (u,v)∈X,

A1(u,v)=µ1 I1(u2,u2)+µ2 I1(v2,v2)+2βI1(u2,v2)

≤ 1
π

(
µ1∥u∥2

∗∥u∥2
2+µ2∥v∥2

∗∥v∥2
2+β∥u∥2

∗∥v∥2
2+β∥v∥2

∗∥u∥2
2
)

. (2.6)

Proposition 2.1 ([31], Gagliardo-Nirenberg inequality). Let u∈Lq(RN) and it is derivatives
of order m, Dmu ∈ Lr(RN), 1 ≤ q,r ≤ ∞. For the derivatives Dju, 0 ≤ j < m, the following
inequalities hold

∥Dju∥p ≤C∥u∥1−a
q ∥Dmu∥a

r , (2.7)

where
1
p
=

j
N
+a
(

1
r
− m

N

)
+(1−a)

1
q

,

for all j
m ≤ a≤1 and the constant C depending only on N,m, j,p,r,a.

Lemma 2.1 ([26], Lemma 2.1). Let {un} be a sequence in L2(R2) such that un→u∈L2(R2)\
{0} pointwise a.e. on R2 and {vn} be a bounded sequence in L2(R2) such that

sup
n∈N

I1
(
u2

n,v2
n
)
<∞.

Then there exists n0∈N and C>0 such that ∥vn∥∗<C for n≥n0.

Lemma 2.2. We have the following properties:
(i): For all p∈ [2,∞), the embedding X ↪→Lp(R2)×Lp(R2) is compact;
(ii): The functionals A0,A1,A2 and J are of class C1 on X. Moreover, for any (u,v),(ϕ,ψ)∈

X, 〈
A′

i(u,v),(ϕ,ψ)
〉
=4µ1 Ii(uϕ,u2)+4µ2 Ii(vψ,v2)

+4βIi(vψ,u2)+4βIi(uϕ,v2), (i=0,1,2); (2.8)

(iii): J is weakly lower semicontinuous on X.

Proof. The proof is similar to that of Lemma 2.3 in [23] and Lemma 2.2 in [26], so we omit
it.

Lemma 2.3. Let u∈X1\{0}. Then wu ∈L∞
loc(R

2), and

wu(x)+
1

2π
∥u∥2

2 ln(|x|)→0 as |x|→+∞, (2.9)
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where

wu(x) :=−
∫

R2

1
2π

ln(|x−y|)u2(y)dy.

Moreover, if u∈C1,α
loc (R

2) for any 0≤α<1, then wu is of class C3(R2) and satisfies −△wu=u2

in R2.

Proof. The proof has been given in [23] or [26].

Lemma 2.4. Assume that β,λi,µi>0 (i=1,2). If (u,v)∈X\{(0,0)} is a weak solution of (1.5).
Then

(i): u,v∈C2(R2);
(ii): u,v decay exponentially, i.e., there exist C1>0 and C2>0 such that

|u(x)|, |v(x)|≤C1e−C2|x|. (2.10)

Proof. We set

f1(x) :=µ1wu(x)u(x)+βwv(x)u(x),
f2(x) :=µ2wv(x)v(x)+βwu(x)v(x),

where wu and wv are defined in Lemma 2.3. The system (1.5) can be written as{
−∆u+λ1u= f1(x), in R2,
−∆v+λ2v= f2(x), in R2.

(2.11)

Then, for any bounded open subset W⊂⊂R2, we find that, for any p∈ [1,∞),

∥ f1(x)∥p
Lp(W)

≤C1

∫
W

∣∣w2
u(x)+2u2(x)+w2

v(x)
∣∣p dx

≤C2

(
∥wu∥2p

L∞(W)
+∥u∥2p

L2p(W)
+∥wv∥2p

L∞(W)

)
≤C,

∥ f2(x)∥p
Lp(W)

≤C2

(
∥wu∥2p

L∞(W)
+∥v∥2p

L2p(W)
+∥wv∥2p

L∞(W)

)
≤C,

(2.12)

since wu,wv ∈ L∞
loc(R

2) and (u,v)∈ X ⊂ H. Due to (2.12) and the arbitrariness of W, the
Interior H2–Regularity theory implies that u,v∈W2,p

loc (R
2) for any p∈ [1,∞). By Sobolve

embedding, we have that u,v∈C1,α
loc (R

2) for any 0≤α<1, which, together with Lemma 2.3,
shows that wu,wv∈C3(R2). Then, it is easy to see that f1, f2 are locally Hölder continuous.
Therefore, u,v∈C2(R2) by elliptic regularity theorem.

It follows from the Agmons Theorem ( [32]) that u,v decay exponentially. We com-
plete the proof.
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Lemma 2.5. Assume that β,λi,µi >0 (i=1,2). Then
(i): For any (u,v)∈X\{(0,0)}, there exists a positive constant t0>0 such that(

t2
0u(t0x),t2

0v(t0x)
)
∈N ;

(ii): There exists ζ>0 such that ∥(u,v)∥H ≥ ζ for any (u,v)∈N ;
(iii): c= inf(u,v)∈N J (u,v)>0.

Proof. (i): For any (u,v)∈X\{(0,0)}. Consider

g(t) :=N
(
t2u(tx),t2v(tx)

)
= t4(∥∇u∥2

2+∥∇v∥2
2
)
+t2(λ1∥u∥2

2+λ2∥v∥2
2
)

+t4A0(u,v)− t4 lnt
2π

(
µ1∥u∥4

2+µ2∥v∥4
2+2β∥u∥2

2∥v∥2
2

)
, t>0.

It is easy to see that limt→0+ g(t)= 0+ and limt→+∞ g(t)=−∞. So there exists a positive
constant t0>0 such that N

(
t2
0u(t0x),t2

0v(t0x)
)
=0, i.e.,

(
t2
0u(t0x),t2

0v(t0x)
)
∈N .

(ii): We have

∥(u,v)∥2
H =−A0(u,v)=A2(u,v)−A1(u,v)

≤A2(u,v)≤C1

(
∥u∥4

8
3
+∥v∥4

8
3

)
≤C∥(u,v)∥4

H, ∀(u,v)∈N ,

which implies that, for any (u,v)∈N ,

∥(u,v)∥2
H ≥ 1

C
=: ζ2>0. (2.13)

(iii): Using (ii), we get that, for any (u,v)∈N ,

J (u,v)=J (u,v)− 1
4

N(u,v)=
1
4
∥(u,v)∥2

H ≥ 1
4

ζ2>0.

Hence c= inf(u,v)∈N J (u,v)≥ 1
4 ζ2>0.

Lemma 2.6. Assume that β,λi,µi >0(i=1,2). Then N is a C1–manifold and any critical point
of J |N is a critical point of J in X.

Proof. Following from Lemma 2.5(i), we have that N ̸=Ø. Now, we divided our proof
into two steps.

(i): By (2.4) and the Sobolev embedding inequality, we find that, for any r> 0 small
enough,

N(u,v)=∥(u,v)∥2
H+A0(u,v)≥∥(u,v)∥2

H−(µ1+β)C0∥u∥4
8
3
−(µ2+β)C0∥v∥4

8
3

≥∥(u,v)∥2
H−C∥(u,v)∥4

H >0, ∀∥(u,v)∥H = r,
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which means that (0,0) /∈∂N .
On the other hand, we can obtain that, for any (u,v)∈N ,〈

N′(u,v),(u,v)
〉
=2∥(u,v)∥2

H+4A0(u,v)=−2∥(u,v)∥2
H <0, (2.14)

which, together with the Implicit Function Theorem, implies that N is a C1–manifold.
(ii): If (u,v) is a critical point of J |N , i.e., (u,v)∈N and (J |N )′(u,v)= (0,0). Then

there is a Lagrange multiplier γ∈R such that

J ′(u,v)−γN′(u,v)=(0,0). (2.15)

Testing (2.15) with (u,v), we get that

0=
〈
J ′(u,v),(u,v)

〉
−γ

〈
N′(u,v),(u,v)

〉
=−γ

〈
N′(u,v),(u,v)

〉
. (2.16)

From (2.14) and (2.16), we get that γ= 0. Hence, J ′(u,v) = (0,0), i.e., (u,v) is a critical
point of J in X. The proof of Lemma 2.6 is completed.

Lemma 2.7. Assume that β,λi,µi >0(i=1,2). If β>max{β1,β2}, then we have

c<min{J (u1,0),J (0,u2)},

where β1 and β2 are defined in (1.12), and ui is the unique ground state solution of (1.6) with
(λ,µ)=(λi,µi) (i=1,2).

Proof. Without loss of generality, we may assume that J (u1,0)≤J (0,u2). For any ρ≥0,
let

Fρ(t) :=N(tu1,tρu1)= t2∥(u1,ρu1)∥2
H+t4(µ1+ρ4µ2+2ρ2β)I0(u2

1,u2
1). (2.17)

Since u1 is the unique ground state solution of (1.6) with (λ,µ)=(λ1,µ1), one has that

∥∇u1∥2
2+λ1∥u1∥2

2+µ1 I0(u2
1,u2

1)=0, (2.18)

which means that I0(u2
1,u2

1)<0. So we can see that

tρ =

(
∥(u1,ρu1)∥2

H
(µ1+ρ4µ2+2ρ2β)

(
−I0(u2

1,u2
1)
)) 1

2

(2.19)

is the unique positive root of Fρ(t)=0, which implies that (tρu1,tρρu1)∈N for any ρ≥0.
By (2.18)-(2.19), we can find that, for any ρ≥0,

h(ρ) :=J (tρu1,tρρu1)=
t2
ρ

2
∥(u1,ρu1)∥2

H+
t4
ρ

4

(
µ1+ρ4µ2+2ρ2β

)
I0(u2

1,u2
1)

=
∥(u1,ρu1)∥4

H
4(µ1+ρ4µ2+2ρ2β)

(
−I0(u2

1,u2
1)
)
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=

µ1

(
∥∇u1∥2

2+λ1∥u1∥2
2+ρ2(∥∇u1∥2

2+λ2∥u1∥2
2
))2

4(µ1+ρ4µ2+2ρ2β)
(
∥∇u1∥2

2+λ1∥u1∥2
2

)
=

µ1(b1+ρ2b2)2

4(µ1+ρ4µ2+2ρ2β)b1
,

where bi :=∥∇u1∥2
2+λi∥u1∥2

2 (i=1,2). Since β>β1, we have b2µ1−b1β<0, which, together
with the derivative of h(ρ), gives that

h′(ρ)=
µ1

[
4
(
b1+ρ2b2

)
ρb2
(
µ1+ρ4µ2+2ρ2β

)
−
(
4ρ3µ2+4ρβ

)(
b1+ρ2b2

)2
]

4b1
(
µ1+ρ4µ2+2ρ2β

)2

=

µ1

[(
4b1b2µ1−4b2

1β
)
ρ+o(ρ2)

]
4b1
(
µ1+ρ4µ2+2ρ2β

)2 →0−, as ρ→0+. (2.20)

So there exists ρ1>0 such that

c≤J (tρ1 u1,tρ1 ρ1u1)=h(ρ1)<h(0)=
1
4

b1=
1
4
(
∥∇u1∥2

2+λ1∥u1∥2
2
)

=
1
2
(
∥∇u1∥2

2+λ1∥u1∥2
2
)
+

1
4

µ1 I0(u2
1,u2

1)=J (u1,0)=min{J (u1,0),J (0,u2)}. (2.21)

We complete the proof.

3 The proof of Theorem 1.2

Proof of Theorem 1.2: Assume that {(un,vn)}⊂N such that J (un,vn)→ c as n→∞. It is
easy to see that

c+o(1)=J (un,vn)−
1
4

N(un,vn)=
1
4
∥(un,vn)∥2

H,

which tells us that {(un,vn)} is bounded in H. Using (2.7), we have ∥u∥4
8
3
≤C∥u∥3

2∥∇u∥2

for any u∈H1(R2), which, together with (2.4), means that

0≤A2(un,vn)≤C0(µ1+β)∥un∥4
8
3
+C0(µ2+β)∥vn∥4

8
3

≤C1
(
∥un∥3

2∥∇un∥2+∥vn∥3
2∥∇vn∥2

)
≤C. (3.1)

So we can get that

c+o(1)=J (un,vn)=
1
2
∥(un,vn)∥2

H+
1
4

A0(un,vn)
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≥1
4

A1(un,vn)−
1
4

A2(un,vn)≥
1
4
(
µ1 I1(u2

n,u2
n)+µ2 I1(v2

n,v2
n)+2βI1(u2

n,v2
n)
)
−C,

which implies that {I1(u2
n,v2

n)} is bounded. Since {I1(u2
n,v2

n)} and {∥(un,vn)∥2
H} are

bounded in R, it follows from Lemma 2.1 that {∥un∥2
∗+∥vn∥2

∗} is bounded. So {(un,vn)}
is bounded in X. Passing to a subsequence, one has that

(un,vn)⇀ (u0,v0) in X,

(un,vn)→ (u0,v0) in Lp(R2)×Lp(R2) for p∈ [2,∞),

(un,vn)→ (u0,v0) a.e. on R2.

(3.2)

By the definition of A0,A1,A2 and (3.1), we find

c+o(1)=J (un,vn)−
1
2

N(un,vn)=−1
4

A0(un,vn)

≤ 1
4

A2(un,vn)≤C1
(
∥un∥3

2∥∇un∥2+∥vn∥3
2∥∇vn∥2

)
≤C(∥un∥2+∥vn∥2)

3(∥∇un∥2+∥∇vn∥2)

≤C(∥un∥2+∥vn∥2)
3,

which shows that ∥un∥2+∥vn∥2 > 0. Using (3.2), we get that (u0,v0) ̸=(0,0). Passing to
(|un|,|vn|), we may assume that (u0,v0) is nonnegative.

By the weak lower semicontinuity of norm and J in X, we can conclude that N(u0,v0)≤
liminfn→∞ N(un,vn)=0, which, together with limt→0+ N(t2u0(tx),t2v0(tx))=0+, implies
that there exists 0< t0≤1 such that (t2

0u0(t0x),t2
0v0(t0x))∈N . Therefore, we find that

c= lim
n→∞

J (un,vn)= lim
n→∞

[
J (un,vn)−

1
4

N(un,vn)
]
= lim

n→∞

1
4
∥(un,vn)∥2

H

≥1
4
∥(u0,v0)∥2

H ≥ t4
0
4
(∥∇u0∥2

2+∥∇v0∥2
2)+

t2
0
4
(λ1∥u0∥2

2+λ2∥v0∥2
2)

=
1
4

∥∥(t2
0u0(t0x),t2

0v0(t0x)
)∥∥2

H =J
(
t2
0u0(t0x),t2

0v0(t0x)
)
≥ c,

which gives that t0 = 1. So J (u0,v0) = c and (u0,v0)∈N , i.e., c is achieved by (u0,v0).
From Lemma 2.7, we get that

J(u0,v0)= c<min{J (u1,0),J (0,u2)}.

Using Lemmas 2.4 and 2.6, we find that (u0,v0)∈C2(R2)×C2(R2) is a nonnegative non-
trivial ground state solution of (1.5). Combining the following decomposition∫

R2
ln(|x−y|)u2(y)dy

=
∫

R2
ln(1+|x−y|)u2(y)dy−

∫
R2

ln
(

1+
1

|x−y|

)
u2(y)dy, ∀u∈X1

and the strong maximum principle, we have that (u0,v0) is a positive ground state solu-
tion of (1.5). The proof of Theorem 1.2 is completed.
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4 The proof of Theorem 1.1

In this section, for any t∈R, we let

Ht :=
{

x=(x1,x2)∈R2 : x1> t
}

, Tt :=
{

x=(x1,x2)∈R2 : x1= t
}

,

and
xt :=(2t−x1,x2), ∀x=(x1,x2)∈R2.

Assume that (u,v) is a fixed positive solution of (1.5) in X and set

ut(x) :=u(xt), vt(x) :=v(xt), wt
u(x) :=wu(xt), wt

v(x) :=wv(xt), x∈R2, t∈R,

and
ut :=ut−u, vt :=vt−v, wu,t :=wt

u−wu, wv,t :=wt
v−wv, in Ht,

where wu,wv are defined in Lemma 2.3. By direct computation, we have that
−∆ut+λ1ut =µ1wu,tut+µ1wuut+βwv,tut+βwvut, in Ht,
−∆vt+λ2vt =µ2wv,tvt+µ2wvvt+βwu,tvt+βwuvt, in Ht,
−∆wu,t =(ut)2−u2=(ut+u)ut, in Ht,
−∆wv,t =(vt)2−v2=(vt+v)vt, in Ht.

(4.1)

Lemma 4.1. Assume that (u,v) is a positive solution of (1.5) and wu,wv are defined in Lemma
2.3. Then we have,

wu,t(x)=wt
u−wu =

∫
Ht

1
2π

ln
(
|x−yt|
|x−y|

)(
ut(y)+u(y)

)
ut(y)dy, x∈R2,

wv,t(x)=wt
v−wv =

∫
Ht

1
2π

ln
(
|x−yt|
|x−y|

)(
vt(y)+v(y)

)
vt(y)dy, x∈R2.

(4.2)

Proof. Since |xt−yt|= |x−y| and |xt−y|= |x−yt|, we find that

wu,t(x)=wt
u−wu =−

∫
R2

1
2π

ln(|xt−y|)u2(y)dy+
∫

R2

1
2π

ln(|x−y|)u2(y)dy

=−
∫

Ht

1
2π

ln(|xt−y|)u2(y)dy−
∫

R2\Ht

1
2π

ln(|xt−y|)u2(y)dy

+
∫

Ht

1
2π

ln(|x−y|)u2(y)dy+
∫

R2\Ht

1
2π

ln(|x−y|)u2(y)dy

=−
∫

Ht

1
2π

ln(|x−yt|)u2(y)dy−
∫

Ht

1
2π

ln(|xt−yt|)u2(yt)dy

+
∫

Ht

1
2π

ln(|x−y|)u2(y)dy+
∫

Ht

1
2π

ln(|x−yt|)u2(yt)dy
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=
∫

Ht

1
2π

(
ln(|x−yt|)−ln(|x−y|)

)(
u2(yt)−u2(y)

)
dy

=
∫

Ht

1
2π

ln
(
|x−yt|
|x−y|

)(
ut(y)+u(y)

)
ut(y)dy.

Similarly, one has that

wv,t(x)=
∫

Ht

1
2π

ln
(
|x−yt|
|x−y|

)(
vt(y)+v(y)

)
vt(y)dy.

We complete the proof.

Lemma 4.2 ([26], Lemma 6.2). There exists a constant k>0 such that

∥w−
u,t∥L2(Ht)≤ kcu,t∥u−

t ∥L2(Ht), for every t∈R, (4.3)

where

cu,t =

(∫
Hu

t

(y1−t)2u2(y)dy
) 1

2

, Hu
t :={x∈Ht : ut(x)<0}, (4.4)

and h− :=min{h,0} for any h∈X1.

Lemma 4.3. Assume that β,λi,µi>0(i=1,2). There exists T>0 such that, when t≥T, ut,vt≥0
in Ht.

Proof. From (2.9), we can choose T1>0 such that wu,wv≤0 in Ht for every t>T1. By (4.1)
and (4.3), we have

∥u−
t ∥2

L2(Ht)
+∥v−t ∥2

L2(Ht)
≤∥(u−

t ,v−t )∥2
H1(Ht)×H1(Ht)

=
∫

Ht

(
µ1wu,tutu−

t +µ1wu(u−
t )

2+βwv,tutu−
t +βwv(u−

t )
2)dx

+
∫

Ht

(
µ2wv,tvtv−t +µ2wv(v−t )

2+βwu,tvtv−t +βwu(v−t )
2)dx

≤
∫

Ht

(
µ1w−

u,tu
tu−

t +βw−
v,tu

tu−
t +µ2w−

v,tv
tv−t +βw−

u,tv
tv−t
)

dx

≤C1∥w−
u,t∥L2(Ht)

(
∥ut∥L∞(Ht)∥u−

t ∥L2(Ht)+∥vt∥L∞(Ht)∥v−t ∥L2(Ht)

)
+C1∥w−

v,t∥L2(Ht)

(
∥ut∥L∞(Ht)∥u−

t ∥L2(Ht)+∥vt∥L∞(Ht)∥v−t ∥L2(Ht)

)
≤C2

(
cu,t∥u−

t ∥L2(Ht)+cv,t∥v−t ∥L2(Ht)

)(
∥u−

t ∥L2(Ht)+∥v−t ∥L2(Ht)

)
≤C(cu,t+cv,t)

(
∥u−

t ∥2
L2(Ht)

+∥v−t ∥2
L2(Ht)

)
. (4.5)
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By the definitions of cu,t,cv,t and the fact that u,v decay exponentially, we find that

lim
t→∞

(cu,t+cv,t)=0,

which, together with (4.5), implies that there exists T>T1 such that, for any t≥T,

u−
t ≡0, v−t ≡0, x∈Ht.

We complete the proof.

Lemma 4.4. Assume that β,λi,µi >0 (i=1,2). Let t∈R and ut ≥0,vt ≥0 in Ht. Then
(i): wu,t ≥0,wv,t ≥0 in Ht;
(ii): If ut ̸≡0 or vt ̸≡0, then we have that

ut >0, vt >0 in Ht and
∂u
∂x1

<0,
∂v
∂x1

<0 in Tt. (4.6)

Proof. (i): Since ln
(
|x−yt|
|x−y|

)
>0 for every x,y∈Ht, by Lemma 4.1, we find that, for every

t∈R,

wu,t, wv,t ≥0 in Ht. (4.7)

(ii): Without loss of generality, we assume that ut ̸≡0 in Ht. Then we get that wu,t >0
in Ht by (4.2). So, (4.1) and (4.7) imply that

−∆ut+
(
λ1−µ1w−

u −βw−
v
)

ut =(µ1wu,t+βwv,t)ut+
(
µ1w+

u +βw+
v
)

ut >0, in Ht,

and

−∆vt+
(
λ2−µ2w−

v −βw−
u
)

vt =(µ2wv,t+βwu,t)vt+
(
µ2w+

v +βw+
u
)

vt >0, in Ht,

where h+ :=max{h,0} for any h∈X. Hence ut>0, vt>0 in Ht by the maximum principle,
and

−2
∂u
∂x1

=
∂ut

∂x1
>0, −2

∂v
∂x1

=
∂vt

∂x1
>0 in Tt,

by the Hopf Lemma. We complete the proof.

Lemma 4.5. Assume that β,λi,µi>0(i=1,2). Let ut(x),vt(x)≥0 in Ht, but ut ̸≡0 or vt ̸≡0 in
Ht. Then there exists ε>0 such that, for any τ∈ (t−ε,t], uτ ≥0,vτ ≥0 in Hτ.

Proof. Let BR := BR(0) for R > 0. By (2.9) and the fact that u,v decay exponentially, we
may choose R>1 large enough such that, for every τ∈R,

wu ≤0, wv ≤0 in Hτ\BR, (4.8)
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and for any τ∈ [t−1,t],(∫
R2\BR

(y1−τ)2u2(y)dy
) 1

2

+

(∫
R2\BR

(y1−τ)2v2(y)dy
) 1

2

<
1

2C0
, (4.9)

where C0 := k(µ1+µ2+2β)(∥uτ∥L∞(Hτ)+∥vτ∥L∞(Hτ)) and k is defined in Lemma 4.2. By
Lemma 4.4(ii) and u,v∈C2(R2), there exists 0< ε<1 such that, for any τ∈ (t−ε,t],

uτ >0, vτ >0 in Hτ∩BR, (4.10)

which means that

u−
τ =0, v−τ =0 in Hτ∩BR. (4.11)

Using (4.1), (4.3), (4.8) and (4.11), we can get that

∥u−
τ ∥2

L2(Hτ)
+∥v−τ ∥2

L2(Hτ)
≤∥(u−

τ ,v−τ )∥2
H1(Hτ)×H1(Hτ)

=
∫

Hτ\BR

(
µ1wu,τuτu−

τ +µ1wu(u−
τ )

2+βwv,τuτu−
τ +βwv(u−

τ )
2)dx

+
∫

Hτ\BR

(
µ2wv,τvτv−τ +µ2wv(v−τ )

2+βwu,τvτv−τ +βwu(v−τ )
2)dx

≤
∫

Hτ\BR

(
µ1w−

u,τuτu−
τ +βw−

v,τuτu−
τ +µ2w−

v,τvτv−τ +βw−
u,τvτv−τ

)
dx

≤∥w−
u,τ∥L2(Hτ)

(
µ1∥uτ∥L∞(Hτ)∥u−

τ ∥L2(Hτ)+β∥vτ∥L∞(Hτ)∥v−τ ∥L2(Hτ)

)
+∥w−

v,τ∥L2(Hτ)

(
β∥uτ∥L∞(Hτ)∥u−

τ ∥L2(Hτ)+µ2∥vτ∥L∞(Hτ)∥v−τ ∥L2(Hτ)

)
≤kcu,τ∥u−

τ ∥L2(Hτ)

(
µ1∥uτ∥L∞(Hτ)∥u−

τ ∥L2(Hτ)+β∥vτ∥L∞(Hτ)∥v−τ ∥L2(Hτ)

)
+kcv,τ∥v−τ ∥L2(Hτ)

(
β∥uτ∥L∞(Hτ)∥u−

τ ∥L2(Hτ)+µ2∥vτ∥L∞(Hτ)∥v−τ ∥L2(Hτ)

)
≤k
(

µ1cu,τ∥uτ∥L∞(Hτ)+βcu,τ∥vτ∥L∞(Hτ)+βcv,τ∥uτ∥L∞(Hτ)

)
∥u−

τ ∥2
L2(Hτ)

+k
(

βcu,τ∥vτ∥L∞(Hτ)+βcv,τ∥uτ∥L∞(Hτ)+µ2cv,τ∥vτ∥L∞(Hτ)

)
∥v−τ ∥2

L2(Hτ)

≤C0(cu,τ+cv,τ)
(
∥u−

τ ∥2
L2(Hτ)

+∥v−τ ∥2
L2(Hτ)

)
. (4.12)

Using (4.10) and the definition of Hw
τ , we have Hu

τ ,Hv
τ ⊂R2\BR, which, combining (4.9)

and the definition of cw,τ, means that

cu,τ+cv,τ ≤
(∫

R2\BR

(y1−τ)2u2(y)dy
) 1

2

+

(∫
R2\BR

(y1−τ)2v2(y)dy
) 1

2

<
1

2C0
.
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So ∥u−
τ ∥2

L2(Hτ)
+∥v−τ ∥2

L2(Hτ)
=0, which implies that u−

τ ≡0, v−τ ≡0 in Hτ for any τ∈(t−ε,t].
We complete the proof.

Proof of Theorem 1.1: From Lemma 4.3, there exists T>0 such that, for any t>T,

ut(x)≥0, vt(x)≥0 in Ht. (4.13)

Starting from such a t>T, one can move the plane x1=t to the left as long as (4.13) holds.
Suppose that there exists a t0>0 such that ut0(x),vt0(x)≥0 in Ht0 , but ut0 ̸≡0 or vt0 ̸≡0 in
Ht0 . By Lemma 4.5, there exists a ε>0 such that, for any τ∈ (t0−ε,t0],

uτ(x)≥0, vτ(x)≥0 in Hτ.

Using Lemma 4.4(ii), we have uτ ≡0 in Hτ if and only if vτ ≡0 in Hτ. So we obtain that
if the process of moving plane stops at t1, then ut1 ≡0,vt1 ≡0 in Ht1 and ut≥0,vt≥0 in Ht
for any t≥ t1.
By a translation, we may assume that u(0)=maxx∈R2 u(x) and v(0)=maxx∈R2 v(x). There-
fore, the process of moving plane from any direction must stop at the origin. So u and v
are radially symmetric and monotone decreasing. We complete the proof.
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