
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 38, No. 1, pp. 80-100

doi: 10.4208/jpde.v38.n1.5
March 2025

On a Nonhomogeneous N-Laplacian Problem with
Double Exponential Critical Growth

CHEN Wenjing*and WANG Zexi
School of Mathematics and Statistics, Southwest University, Chongqing 400715,
China.

Received 15 November 2022; Accepted 8 December 2023

Abstract. This paper is devoted to study the existence and multiplicity of nontrivial
solutions for the following boundary value problem−div

(
ω(x)|∇u(x)|N−2∇u(x)

)
= f (x,u)+ϵh(x), in B;

u=0, on ∂B,

where B is the unit ball in RN , the radial positive weight ω(x) is of logarithmic type
function, the functional f (x,u) is continuous in B×R and has double exponential crit-

ical growth, which behaves like exp
{

eα|u|
N

N−1
}

as |u|→∞ for some α> 0. Moreover,

ϵ>0, and the radial function h belongs to the dual space of W1,N
0,rad(B), h ̸=0.
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Chinese Library Classifications: O175.29
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1 Introduction

In this paper, we deal with the existence and multiplicity of nontrivial solutions for the
following nonhomogeneous problem{

−div
(

ω(x)|∇u(x)|N−2∇u(x)
)
= f (x,u)+εh(x), in B;

u=0, on ∂B,
(1.1)
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where B is the unit ball in RN , the radial positive weight ω(x) is of logarithmic type
function, the functional f (x,u) is continuous in B×R and has double exponential critical

growth, which behaves like exp
{

eα|u|
N

N−1
}

as |u|→∞ for some α>0. Moreover, ε>0, and

the radial function h belongs to the dual space of W1,N
0 (B), h ̸=0.

Elliptic equations with exponential growth nonlinearities are motivated by the Trudinger-
Moser inequality. Let Ω be a bounded domain in RN , and denote with W1,N

0 (Ω) the
standard first order Sobolev space given by

W1,N
0 (Ω)= cl

{
u∈C∞

0 (Ω) :
∫

Ω
|∇u|Ndx<∞

}
, ∥u∥W1,N

0 (Ω)=
(∫

Ω
|∇u|Ndx

) 1
N

.

This space is a limiting case for the Sobolev embedding theorem, which yields W1,N
0 (Ω)↪→

Lp(Ω) for all 1≤ p<∞, but one knows by easy examples that W1,N
0 (Ω) ̸⊆ L∞(Ω). Hence,

one is led to look for a function g(s) :R→R+ with maximal growth such that

sup
u∈W1,N

0 (Ω),∥u∥
W1,N

0 (Ω)
≤1

∫
Ω

g(u)dx<∞.

It was shown that by Trudinger [1] and Moser [2] that the maximal growth is of exponen-
tial type. More precisely,

exp
(

α|u| N
N−1

)
∈L1(Ω), ∀ u∈W1,N

0 (Ω), ∀α>0,

and
sup

∥u∥
W1,N

0 (Ω)
≤1

∫
Ω

exp
(

α|u| N
N−1

)
dx≤C(N)∈R, if α≤αN ,

where αN =Nω
1

N−1
N−1 and ωN−1 is the (N−1)-dimensional surface of the unit sphere.

Recently, the influence of weights on limiting inequalities of Trudinger-Moser type
has been studied, for example, see [3–5]. Let B=B1(0) be the unit ball in RN , if ω∈L1(Ω)
is a non-negative function, we introduce the weighted Sobolev space

W1,N
0 (Ω,ω)= cl

{
u∈C∞

0 (Ω) :
∫

Ω
|∇u|Nω(x)dx<∞

}
. (1.2)

A general embedding theory for such weighted Sobolev spaces has been developed in
Kufner [6]. It turns out that for weighted Sobolev spaces of form (1.2) logarithmic weights
have a particular significance, since they concern limiting situations of such embeddings.
However, to obtain interesting results, one needs to restrict attention to radial functions.
So let us consider the subspace of radial functions, i.e.,

W1,N
0,rad(B,ω)= cl

{
u∈C∞

0,rad(B) : ∥u∥ :=
∫

Ω
|∇u|Nω(x)dx<∞

}
,
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with the specific weight

ω=

(
log

e
|x|

)N−1

. (1.3)

Calanchi and Ruf [5] showed the following double exponential: setting N′= N
N−1 ,∫

B
ee|u|

N′

dx<∞, ∀ u∈W1,N
0,rad(B,ω), (1.4)

where ω is given by (1.3), and

sup
u∈W1,N

0,rad(B,ω), ∥u∥≤1

∫
B

eβeω

1
N−1
N−1 |u|N

′

dx<∞ ⇐⇒ β≤N. (1.5)

The problems of type (1.1) with double exponential growth nonlinearities are motivated
from logarithminc weights Trudinger-Moser type inequalities (1.4) and (1.5). If N = 2,
in the semilinear case, the results of Trudinger-Moser type inequalities with logarithmic
weights has been obtained in [3, 4], and we refer to [7] for some applications about the
existence and multiplicity of solutions for elliptic problems. If ε = 0, the existence of
solutions for problem (1.1) with double critical exponential nonlinearity at infinity has
been studied in [8]. However, as far as we know, there are no results on the existence
of solutions for a nonhomogeneous N-Laplacian problem with critical growth of double
exponential type.

Motivated by the above results, in the present paper, we study the existence and mul-
tiplicity of solutions for a nonhomogeneous N-Laplacian problem with double critical
exponential nonlinearity. The main purpose of this paper is to establish the result of
multiplicity solutions to problem (1.1) when ε> 0 small enough by using the Ekeland’s
variational principle and mountain pass theorem.

In view of inequality (1.5), we say that f has double exponential subcritical growth at +∞
if for all α>0,

lim
s→∞

| f (x,s)|

exp
{

eα|s|
N

N−1
} =0, (1.6)

and f has double exponential critical growth at +∞ if there exists α0>0 such that

lim
s→∞

| f (x,s)|

exp
{

Neα|s|
N

N−1
} =0, ∀ α>α0;

lim
s→∞

| f (x,s)|

exp
{

Neα|s|
N

N−1
} =+∞, ∀α≤α0.

(1.7)
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We assume the following conditions on the nonlinearity f (x,u):
(F1) f : B×R→R is continuous radial in x, and f (x,u)=0 for all (x,u)∈B×(−∞,0].
(F2) There exist constants R0,M0>0 such that for all x∈B and u≥R0,

F(x,u)≤M0 f (x,u).

(F3) There exists µ>N such that for all x∈B and u>0,

0<µF(x,u)≤u f (x,u),

where F(x,u)=
∫ u

0 f (x,t)dt.
(F4) limsupu→0+

NF(x,u)
uN <λ1, uniformly in x∈ B, where λ1 > 0 is the first eigenvalue

associated to the operator −div(ω(x)|∇·|N−1) in W1,N
0,rad(B,ω).

Since we are only concerned with the nonnegative solution, the condition (F1) is nat-
ural. Our results state as follows.

Theorem 1.1. Suppose f has critical growth at +∞ with α0 >0 given by (1.7), and (F1)−(F4)
hold. Then there exists ε1>0 such that for each 0< ε< ε1, problem (1.1) has a nontrivial solution
with negative energy.

Theorem 1.2. Suppose f has critical growth at +∞ with α0 >0 given by (1.7), and (F1)−(F4)
hold. Moreover, assume f satisfies the following condition:

(F5) there exists constant γ0 with γ0>
1

αN−1
0 eN such that

lim
t→∞

f (x,t)t

exp
{

Neα0|t|
N

N−1
} ≥γ0, uniformly in x.

Then there exists ε2 > 0 such that for each 0< ε< ε2, problem (1.1) has at least two nontrivial
weak solutions.

The existence of solutions for critical exponential problems was studied in [9–13] and
references therein. Moreover, the existence of solutions for elliptic equations involving
critical exponential nonlinearities and a small nonhomogeneous term was considered by
many authors, for example, we refer to [14–20]. Here we extend some of these works to
consider the nonlinear term has double exponential critical growth at infinity given by (1.7).

Since the nonlinearity f has critical growth, the Euler-Lagrange functional does not
satisfy the Palais-Smale condition at all level, we will use a logarithmic concentrating
sequence (Moser sequence) to show that the functional satisfies the Palais-Smale at a
certain level.

The paper is organized as follows: we give some preliminaries results in Section 2.
Section 3 is devoted to study the geometry of the Lagrange-Euler function of problem.
We give a more precise information about the minimax level obtained by the mountain
pass theorem in Section 4. Section 5 is devoted to analyze the compactness of Palais-
Smale sequence, and we prove the existence of solutions for problem (1.1) in Section 6.
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2 Preliminaries results

Let us consider the space H :=W1,N
0,rad(B,ω) endowed with the norm

∥u∥=
(∫

B
|∇u|Nω(x)dx

) 1
N

with ω(x)=
(

log
e
|x|

)N−1

.

The functional Iε : H→R is given by

Iε(u)=
1
N
∥u∥N−

∫
B

F(x,u)dx−ε
∫

B
hudx.

The functional is of class C1, since the hypothesis on the growth of f ensures the existence
of positive constants c and C such that

| f (x,t)|≤Cexp
{

ec|t|
N

N−1
}

, ∀x∈B, ∀t∈R. (2.1)

A straightforward calculation shows

I′ε(u)ϕ=
∫

B
|∇u|N−2∇u∇ϕ ω(x)dx−

∫
B

f (x,u)ϕdx−ε
∫

B
hϕdx,

for all ϕ∈H. Hence, a weak solution of (1.1) is a critical point of Iε.

Definition 2.1. Let (X,∥·∥X) be a real Banach space with its dual space (X∗,∥·∥X∗) and I ∈
C1(X,R). For c∈R, we say that I satisfies the (PS)c condition if for any sequence {uk}⊂X with
I(uk)→ c, I′(uk)→0 in X∗, there is a subsequence {ukl} such that {ukl} converges strongly in
X.

We conclude this section with a technical result which we shall use later, whose proof
can be seen [8, Lemma 2.1], we give the proof here for the convenience of readers.

Lemma 2.1 (Lions-type Lemma). Let {uk}k ⊂ H be such that ∥uk∥= 1. If uk ⇀ u in H and
u ̸=0, then

sup
k

∫
B

eNepω

1
N−1
N−1 |uk |

N
N−1

dx<+∞

for any 1< p<P, where

P :=

{ 1

(1−∥u∥N)
1
N

, if ∥u∥<1;

+∞, if ∥u∥=1.

Proof. From the Brézis-Lieb Lemma ( [21]), it holds that

∥uk−u∥N =1−∥u∥N+ok(1), (2.2)
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where ok(1)→0 as k→∞. For every x∈B, it is not difficult to see that

|uk|
N

N−1 ≤ (1+ε)|uk−u| N
N−1 +C|u| N

N−1

for some positive constant C depending only on N and ε, where ε is a small positive
number to be chosen later. This together with Young inequality, implies that

∫
B

eNepω

1
N−1
N−1 |uk |

N
N−1

dx

≤
∫

B
exp

{
Nepω

1
N−1
N−1 (1+ε)|uk−u|

N
N−1 epω

1
N−1
N−1 C|u|

N
N−1

}
dx

≤
∫

B
exp

{
N
[

1
q

eqpω
1

N−1
N−1 (1+ε)|uk−u|

N
N−1

+
1
q′

eq′pω
1

N−1
N−1 C|u|

N
N−1

]}
dx

≤1
q

∫
B

exp
{

Neqpω
1

N−1
N−1 (1+ε)|uk−u|

N
N−1

}
dx+

1
q′

∫
B

{
Neq′pω

1
N−1
N−1 C|u|

N
N−1

}
dx, (2.3)

where 1
q +

1
q′ = 1. When p < (1−∥u∥N)−

1
N−1 and p is fixed, we can choose some q > 1

and ε>0 such that qp(1+ε)< (1−∥u∥N)−
1

N−1 . Then Lemma follows from (1.5), (2.2) and
(2.3).

3 The geometry of the function

In this section, we show that the energy functional Jε satisfies geometric conditions of the
mountain pass theorem. Then, we are going to use the mountain-pass theorem without
a compactness condition such as the one of the (PS) type to prove the existence of the
solution. This version of the mountain-pass theorem is a consequence of the Ekeland’s
variational principle.

Lemma 3.1. Suppose (F1)−(F4) hold, f has a critical growth at +∞, then there exists ε1 > 0
such that for 0< ε< ε1, there exists ρε >0 such that

Iε(u)>0 if ∥u∥=ρε.

Furthermore, ρε can be chosen such that ρε →0 as ε→0.

Proof. From (F4), there exist τ,δ0>0 such that

F(x,u)≤ λ1−τ

N
|u|N , for |u|≤δ0, x∈B. (3.1)

On the other hand, from (2.1), we have that for q>N, there exists a constant C1 >0 such
that

F(x,u)≤C1|u|q exp
{

ec|u|
N

N−1
}

, ∀ |u|≥δ0, x∈B.



86 W. J. Chen and Z. X. Wang/ J. Partial Diff. Eq., 38 (2025), pp. 80-100

Thus

Iε(u)≥
1
N
∥u∥N− λ1−τ

N

∫
B
|u|Ndx−C1

∫
B
|u|q exp

{
ec|u|

N
N−1
}

dx−ε
∫

B
hudx

≥ τ

Nλ1
∥u∥N−C1

(∫
B
|u|

Nq
N−1 dx

) N−1
N
(∫

B
exp

{
Nec|u|

N
N−1
}

dx
) 1

N

−ε∥h∥∗∥u∥.

Now, we choose ρ>0 such that cρ
N

N−1 ≤ω
1

N−1
N−1, using (1.5), we find

∫
B

exp
{

Nec|u|
N

N−1
}

dx=
∫

B
exp

{
Nec∥u∥

N
N−1
(

|u|
∥u∥

) N
N−1
}

dx≤C2, ∀ u∈H with ∥u∥=ρ.

Moreover, since (∫
B
|u|

Nq
N−1 dx

) N−1
N

≤C3∥u∥q.

We get

Iε(u)≥
[ τ

Nλ1
∥u∥N−1−C∥u∥q−1−ε∥h∥∗

]
∥u∥ (3.2)

for ρ> 0 satisfying cρ
N

N−1 ≤ω
1

N−1
N−1. Since q> N, we may choose ρ> 0 such that τ

N ρN−1−
Cρq−1>0 Thus, if ε is sufficiently small then there exists some ρε >0 such that Iε(u)>0 if
∥u∥=ρε and ρε →0 as ε→0.

Lemma 3.2. Suppose (F1) and (F2) hold. There exists e ∈ H with ∥e∥> ρε such that Iε(e)<
inf∥u∥=ρε

Iε(u).

Proof. Let u0∈H∩L∞(B) such that ∥u0∥∞ =1. From (F1) and (F2), there exists a constant
C>0 such that

F(x,u)≥Ce
1

M0
|u|, ∀|u|≥R0, x∈B.

In particular, for p>N, there exists C such that

F(x,u)≥C|u|p−C, ∀u∈R, x∈B.

Since p>N, for t>0, we have

Iε(tu0)≤
tN

N
∥u0∥N−Ctp

∫
B
|u0|pdx+C−tε

∫
B

hu0dx→−∞

as t→∞. Setting e= tu0 with t sufficiently large, the proof of the lemma follows.
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Lemma 3.3. Suppose (F1) holds. Then there exist η > 0 and v ∈ H with ∥v∥= 1 such that
Iε(tv)<0 for all 0< t<η. In particular,

inf
∥u∥≤η

Iε(u)<0.

Proof. Let v∈H be the unique solution of the problem

−div
(
ω(x)|∇v|N−2∇v

)
=h in B, v=0 on ∂B.

It follows from h ̸=0 that ∫
B

hvdx=∥v∥N >0.

For t>0, we have

d
dt

Iε(tv)= tN−1∥v∥N−
∫

B
f (x,tv)vdx−ε

∫
B

hvdx.

Since f (x,0)=0, we have d
dt Iε(tv)

∣∣
t=0 <0. By continuity, it follows that there exists η>0

such that for all 0< t<η,
d
dt

Iε(tv)<0.

Notice that Iε(0)=0, we arrive at Iε(tv)<0 for all 0< t<η.

4 The minimax level

In order to get a more precise information about the minimax level obtained by the moun-
tain pass theorem, let us consider the function φk=φk(x) defined by means of the identity

ψk(t) :=ω
1
N
N−1φk(x), with |x|= e−t

where {ψk}k is the Moser-type sequence introduced in [5]. More precisely

ψk(t)=


log(1+t)

log
1
N (1+k)

, 0≤ t≤ k;

log
N−1

N (1+k), t≥ k.
(4.1)

Then
∥φk∥N =

∫
B
|∇φk(x)|N

∣∣log
e
|x|
∣∣N−1dx=

∫ ∞

0
|ψ′

k(t)|N(1+t)N−1dt=1,

and ∫
B

exp
{

Neω
1

N−1
N−1 |φk |

N
N−1

}
dx=ωN−1

∫ ∞

0
exp

{
Neψ

N
N−1

k −Nt
}

dt.
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Lemma 4.1. We have

lim
k→∞

∫ ∞

0
exp

{
Neψ

N
N−1

k −Nt
}

dt=
N+1

N
eN . (4.2)

Proof. The proof can be seen in [8, Lemma 4.1].

Lemma 4.2. Suppose that (F1) and (F5) hold. Then there exists k∈N such that

max
t≥0

{
tN

N
−
∫

B
F(x,tφk(x))dx

}
<

1
N

ω
1

N−1
N−1

α0

N−1

,

where φk(x) = ω
− 1

N
N−1ψk(t) with |x| = e−t and ψk is defined in (4.1), ωN−1 is the (N−1)-

dimensional surface of the unit sphere, and α0 is given in (1.7).

Proof. Suppose, by contradiction, that for all k we have

max
t≥0

{
tN

N
−
∫

B
F(x,tφk(x))dx

}
≥ 1

N

ω
1

N−1
N−1

α0

N−1

.

Then for any k≥1, there exists tk >0 satisfying

1
N

ω
1

N−1
N−1

α0

N−1

≤max
t≥0

{
tN

N
−
∫

B
F(x,tφk(x))dx

}
=

tN
k
N

−
∫

B
F(x,tk φk(x))dx.

Thus

tN
k
N

−
∫

B
F(x,tk φk(x))dx≥ 1

N

ω
1

N−1
N−1

α0

N−1

,

and using the fact that F(x,u)≥0, we obtain

tN
k ≥

ω
1

N−1
N−1

α0

N−1

. (4.3)

Since at t= tk, we have
d
dt

(
tN

N
−
∫

B
F(x,tφk(x))dx

)
=0,

it follows that

tN
k =

∫
B

f (x,tk φk)tk φkdx. (4.4)
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Using hypothesis (F5), given τ>0, there exists Rτ >0 such that for all u≥Rτ, we get

f (x,t)t≥ (γ0−τ)exp
{

Neα0|t|
N

N−1
}

, ∀|t|≥Rτ, uniformly in x. (4.5)

By (4.4) and the definition of φk,

tN
k =

∫
B

f (x,tk φk)tk φkdx≥ωN−1

∫ ∞

k
f

(
e−s,tk

ψk

ω1/N
N−1

)
tk

ψk

ω1/N
N−1

e−Nsds.

By the definition of φk and (4.3), for s≥ k, we have

tk
ψk

ω
1
N
N−1

= tk

 log(1+k)

ω
1

N−1
N−1

 N−1
N

≥
(

log(1+k)
α0

) N−1
N

.

Therefore, for any k≥ k̄ with k̄= k̄(τ)≥1 sufficiently large, from (4.5), we get

tN
k ≥ωN−1

∫ ∞

k
f

e−s,tk
ψk

ω
1
N
N−1

tk
ψk

ω
1
N
N−1

e−Nsds

≥ωN−1(γ0−τ)
∫ ∞

k
exp

{
Ne

α0

∣∣∣tk
ψk

ω1/N
N−1

∣∣∣ N
N−1}

e−Nsds

=ωN−1(γ0−τ)
∫ ∞

k
exp

{
Neα0|tk |

N
N−1 ω

− 1
N−1

N−1 log(1+k)−Ns
}

ds

=
ωN−1

N
(γ0−τ)exp

{
Neα0ω

− 1
N−1

N−1 |tk |
N

N−1 log(1+k)−Nk
}

. (4.6)

So

1≥ ωN−1

N
(γ0−τ)exp

{
Neα0ω

− 1
N−1

N−1 |tk |
N

N−1 log(1+k)−Nk−N logtk

}
, ∀ k≥ k̄,

and thus {tk}k is bounded. Now, if

lim
k→∞

tN
k >

ω
1

N−1
N−1

α0

N−1

. (4.7)

Then (4.6) would yield a contradiction with the boundedness of {tk}k. Hence (4.7) can
not hold, it follows from (4.3) that

lim
k→∞

tN
k =

ω
1

N−1
N−1

α0

N−1

. (4.8)
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In order to estimate (4.4) more precisely, we consider the sets

Ak =
{

x∈B : tk φk ≥Rτ

}
, Ck =B\Ak,

where Rτ >0 is given by (4.5). By construction,

tN
k =

∫
B

f (x,tk φk)tk φkdx

≥(γ0−τ)
∫

Ak

exp
{

Neα0|tk φk |
N

N−1

}
dx+

∫
Ck

f (x,tk φk)tk φkdx

≥(γ0−τ)
∫

B
exp

{
Neα0|tk φk |

N
N−1

}
dx−(γ0−τ)

∫
Ck

exp
{

Neα0|tk φk |
N

N−1

}
dx

+
∫

Ck

f (x,tk φk)tk φkdx.

Since φk →0 and the characteristic functions χCk →1 for almost every x in B. Therefore,
the Lebesgue’s dominated convergence theorem implies∫

Ck

exp
{

Neα0|tk φk |
N

N−1

}
dx→ ωN−1

N
eN and

∫
Ck

f (x,tk φk)tk φkdx→0.

Then, we haveω
1

N−1
N−1

α0

N−1

= lim
k→∞

tN
k ≥(γ0−τ) lim

k→∞

∫
B

exp
{

Neα0|tk |
N

N−1 |φk |
N

N−1

}
dx−(γ0−τ)

ωN−1

N
eN .

By (4.3) and Lemma 4.1, we have

lim
k→∞

∫
B

exp
{

Neα0|tk |
N

N−1 |φk |
N

N−1

}
dx

=ωN−1 lim
k→∞

∫ ∞

0
exp

{
Neα0|tk |

N
N−1 ω

− 1
N−1

N−1 |ψk(t)|
N

N−1 −Nt
}

dt

≥ωN−1 lim
k→∞

∫ ∞

0
exp

{
Ne|ψk(t)|

N
N−1 −Nt

}
dt

=ωN−1
N+1

N
eN .

Thus, we get ω
1

N−1
N−1

α0

N−1

≥ (γ0−τ)ωN−1eN ,

which implies that

γ0≤
1

αN−1
0 eN

,

a contradiction with (F5), thus the proof is complete.
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Lemma 4.3. Suppose that (F1)−(F5) hold, if ε>0 is sufficiently small, then

max
t≥0

Iε(tφk)=max
t≥0

{
tN

N
−
∫

B
F(x,tφk(x))dx−ε

∫
B

thφkdx
}
<

1
N

ω
1

N−1
N−1

α0

N−1

.

Proof. Since ∣∣∣∣∫B
εhφkdx

∣∣∣∣≤ ε∥h∥∗.

Then taking ε sufficiently small and using Lemma 4.2, the result follows.

We can conclude by inequality (3.2) and Lemma 3.3 that

−∞< c0 := inf
∥u∥≤η

Iε(u)<0. (4.9)

In the next section, we prove that this infimum is achieved and generate a solution. In
order to obtain convergence results, we need to improve the estimate of Lemma 4.2.

Lemma 4.4. Suppose that (F1)−(F5) hold, then there exist ε2 ∈ (0,ε1] and u∈ H such that for
all 0< ε< ε2,

Iε(tu)< c0+
1
N

ω
1

N−1
N−1

α0

N−1

for all t≥0.

Proof. It is possible to increase the infimum c0 by reducing ε. By Lemma 3.1, ρε → 0 as
ε→0. Consequently, c0 →0 as ε→0. Thus there exists ε2 >0 such that of 0< ε< ε2, then
by Lemma 4.3, we have

max
t≥0

Iε(tφk)< c0+
1
N

ω
1

N−1
N−1

α0

N−1

.

Taking u= φk, the result follows.

5 Palais-Smale sequences

In this section, we are going to prove some properties on the Palais-Smale sequences of
Iε.

Lemma 5.1. Any Palais-Smale sequence for Iε is bounded and weakly convergent to a weak
solution of (1.1).
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Proof. In view of Lemmas 3.1 and 3.2, we can apply the mountain pass theorem to obtain
a sequence {uk}k ⊂H such that Iε(uk)→ c>0 and I′ε(uk)→0 as k→∞, that is

1
N
∥uk∥N−

∫
B

F(x,uk)dx−
∫

B
εhukdx→ c as k→∞, (5.1)

|I′ε(uk)v|≤ ok(1)∥v∥ for all v∈H, (5.2)

1
N
∥uk∥N−

∫
B

F(x,uk)dx−
∫

B
εhuk dx→ c as k→∞, (5.3)∣∣I′ε(uk)v

∣∣ ≤ ok(1)∥v∥ for all v∈H, (5.4)

where ok(1)→0 as k→∞. Furthermore, by Lemma 4.3, we have that

c<
1
N

ω
1

N−1
N−1

α0

N−1

.

Using (5.3), (5.4) and (F3), we have( µ

N
−1
)
∥uk∥N ≤C(1+∥uk∥),

and hence ∥uk∥ is bounded and thus∫
B

f (x,uk)dx≤C,
∫

B
F(x,uk)dx≤C.

The embedding H ↪→Lq(B) is compact for all q≥N, by extracting a subsequence, we can
assume that uk⇀u weakly in H and uk→u for almost all x∈B as k→∞. Thanks to Lemma
2.1 in [9], we have

f (x,uk)→ f (x,u) in L1(B) as k→∞. (5.5)

Since
0<F(x,t)≤M0 f (x,t) for all |t|≥R0, uniformly in B.

We may apply the Lebesgue’s dominated convergence theorem to conclude that

F(x,uk)→F(x,u) in L1(B) as k→∞.

Thus by (5.4) passing to the limit, we have∫
B
|∇u|N−2∇v ω(x)dx−

∫
B

f (x,u)vdx−ε
∫

B
huvdx=0, ∀ v∈C∞

0 (B),

and u is a weak solution of (1.1). Moreover, u ̸=0 because c ̸=0.
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Lemma 5.2. If {uk}k is a (PS) sequence for Iε at any level with

liminf
k→∞

∥uk∥N <

ω
1

N−1
N−1

α0

N−1

, (5.6)

then {uk}k possesses a subsequence which converges strongly to a weak solution u0 of (1.1).

Proof. Up to a subsequence, we can assume

lim
k→∞

∥uk∥N <

ω
1

N−1
N−1

α0

N−1

. (5.7)

Thanks to Lemma 5.1, there is a subsequence of {uk}k, denoted by itself, such that uk⇀u
weakly in H, where u0 is a weak solution of (1.1). Let uk =u0+wk. It follows that wk ⇀0
weakly in H. Hence wk →0 strongly in Lq(B) for any q≥1. The Brezis-Lieb Lemma [21]
implies

∥uk∥N =∥u0∥N+∥wk∥N+ok(1). (5.8)

Now we are proving the following

lim
k→∞

∫
B

f (x,uk)u0dx=
∫

B
f (x,u0)u0dx. (5.9)

In fact, since u0∈H, given τ>0, there exists φ∈C∞
0,rad(B) such that ∥φ−u0∥<τ. We have

that ∣∣∣∣∫B
f (x,uk)u0dx−

∫
B

f (x,u0)u0dx
∣∣∣∣

≤
∣∣∣∣∫B

f (x,uk)(u0−φ)dx
∣∣∣∣+∥φ∥∞

∫
B
| f (x,uk)− f (x,u0)|dx

+

∣∣∣∣∫B
f (x,u0)(u0−φ)dx

∣∣∣∣. (5.10)

Since |I′ε(uk)(u0−φ)|≤τk∥u0−φ∥ with τk →0 as k→∞, we find∣∣∣∣∫B
f (x,uk)(u0−φ)dx

∣∣∣∣≤τk∥u0−φ∥+
∫

B
|∇uk|N−1∇(u0−φ) ω(x)dx+ε∥h∥∗∥u0−φ∥

≤τk∥u0−φ∥+∥uk∥∥u0−φ∥+ε∥h∥∗∥u0−φ∥
≤C∥u0−φ∥≤Cτ, (5.11)

where C is a positive constant which is independent of k and τ. Similarly, by using the
fact I′ε(u0)(u0−φ)=0, we have∣∣∣∣∫B

f (x,u0)(u0−φ)dx
∣∣∣∣≤Cτ. (5.12)
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Thus, from (5.10)-(5.12) and (5.5), we obtain that (5.9) holds. From (5.8) and (5.9), we can
write

I′ε(uk)uk =∥uk∥N−
∫

B
f (x,uk)ukdx−ε

∫
B

hukdx

=∥u0∥N−
∫

B
f (x,u0)u0dx−ε

∫
B

hu0dx+∥wk∥N−
∫

B
f (x,uk)(uk−u0)dx

−
[∫

B
f (x,uk)u0dx−

∫
B

f (x,u0)u0dx
]
+ok(1)

=I′ε(u0)u0+∥wk∥N−
∫

B
f (x,uk)wkdx+ok(1),

that is

∥wk∥N =
∫

B
f (x,uk)wkdx+ok(1). (5.13)

Since f has a critical growth, for every τ>0 and q>1, there exist Rτ >0 and Cτ,q>0 such
that

| f (x,t)|q ≤Cτ,q exp
{

Neα0(1+τ)|t|
N

N−1

}
, ∀ |t|≥Rτ, uniformly in x.

Therefore,∫
B
| f (x,uk)|qdx=

∫
{|uk |≤Rτ}

| f (x,uk)|qdx+
∫
{|uk |≥Rτ}

| f (x,uk)|qdx

≤π max
B×[−Rτ ,Rτ ]

| f (x,s)|q+Cτ,q

∫
B

exp
{

Neα0(1+τ)|uk |
N

N−1

}
dx.

From (5.7), there exists kδ such that

∥uk∥N ≤ (1−δ)N−1

ω
1

N−1
N−1

α0

N−1

for all k≥ kδ,

that is
α0(1+τ)∥uk∥

N
N−1 ≤ (1+τ)(1−δ)ω

1
N−1
N−1,

for all k≥ kδ. Now, choosing τ>0 sufficiently small, such that

α0(1+τ)∥uk∥
N

N−1 ≤ω
1

N−1
N−1.

Then

∫
B

exp
{

Neα0(1+τ)|uk |
N

N−1

}
dx=

∫
B

exp

{
Neα0(1+τ)∥uk∥

N
N−1
( |uk |

∥uk∥

) N
N−1
}

dx
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≤
∫

B
exp

{
Neω

1
N−1
N−1

( |uk |
∥uk∥

) N
N−1
}

dx,

which is uniformly bounded in view of the weight Trudinger-Moser inequality. Thus

∣∣∣∫
B

f (x,uk)wkdx
∣∣∣≤(∫

B
| f (x,uk)|qdx

) 1
q

∥wk∥q′ ≤C∥wk∥q′ →0, (5.14)

as k→∞, where q′ is the the conjugate exponent of q. It follows from (5.13) and (5.14) that
uk converges to u0 strongly in H.

6 Existence results

6.1 Proof of Theorem 1.1

The proof of the existence of the first solution to (1.1) follows by a minimization argument
and the Ekeland’s variational principle.

Proposition 6.1. For each ε with 0< ε< ε1, problem (1.1) has a minimum type solution u0 with
Iε(u0)= c0<0, where c0 is defined in (4.9).

Proof. Let ρε be as in Lemma 3.1. We can choose ε1>0 sufficiently small such that

ρε <

ω
1

N−1
N−1

α0


N−1

N

.

Since B̄ρε is a complete metric space with the metric given by the norm of H, convex and
the functional Iε is of class C1 and bounded below on B̄ρε , by the Ekeland’s variational
principle, there exists a sequence {uk}k in B̄ρε such that

Iε(uk)→ c0= inf
∥u∥≤ρε

Iε(u), and ∥I′ε(uk)∥→0,

as k→∞. Observing that

∥uk∥≤ρε <

ω
1

N−1
N−1

α0


N−1

N

.

By Lemma 5.2, it follows that there exists a subsequence of {uk} which converges to a
solution u0 of (1.1). Therefore, Iε(u0)= c0<0.
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6.2 Proof of Theorem 1.2

The proof of the existence of the second solution to (1.1) by the mountain pass theorem.

Proposition 6.2. Suppose that (F1)−(F5) hold, if ε<ε1, the problem (1.1) has a solution uM via
mountain pass theorem.

Proof. From Lemmas 3.1 and 3.2, Jε satisfies the hypotheses of the mountain pass theorem
except possibly for the Palais-Smale condition. Thus, using the mountain pass theorem
without the Palais-Smale condition (see [22]), there exists a sequence {uk} in H satisfying

Iε(uk)→ cm >0 and ∥I′ε(uk)∥→0,

where cm is the mountain pass level of Iε. Now, by Lemma 5.1, the sequence {uk} con-
verges weakly to a solution uM of (1.1).

Remark 6.1. By Lemma 4.3, we have

0< cm < c0+
1
N

ω
1

N−1
N−1

α0

N−1

.

Proposition 6.3. If ε2 > 0 is enough small, then the solutions of (1.1) obtained in Propositions
6.1 and 6.2 are distinct.

Proof. By Propositions 6.1 and 6.2, there exist sequence {uk}, {vk} in H such that

uk →u0 and vk ⇀uM,

Iε(uk)→ c0<0 and Iε(vk)→ cm >0,

I′ε(uk)uk →0 and I′ε(vk)vk →0.

Suppose by contradiction that u0 =uM. As the proof in Lemma 5.1, applying Lemma 2.1
in [9], we have

f (x,vk)→ f (x,u0) in L1(B) as k→∞.

Since
0<F(x,t)≤M0 f (x,t) for all |t|≥R0, uniformly in B.

We may apply the Lebesgue’s dominated convergence Theorem to conclude that

F(x,vk)→F(x,u0) in L1(B) as k→∞. (6.1)

Therefore,

lim
k→∞

∥vk∥N =Ncm+N
∫

B
F(x,u0)dx+Nε

∫
B

hu0dx.
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Setting

zk =
vk

∥vk∥
and z0=

u0

lim
k→∞

∥vk∥
,

we have that ∥zk∥=1 for all k and zk ⇀ z0 in H, and ∥z0∥≤1.
Now, the following two possibilities would have to occur.

Case 1. ∥z0∥= 1. In this case, we have vk → u0 in H. Thus, we can find g ∈ H, such
that |vk(x)|≤ g(x) a.e. in B. It follows from (1.7) and Lebesgue’s dominated convergence
theorem that ∫

B
f (x,vk)vkdx→

∫
B

f (x,u0)u0dx.

Similarly, we have ∫
B

f (x,uk)ukdx→
∫

B
f (x,u0)u0dx.

Then, from I′ε(uk)uk →0 and I′ε(vk)vk →0, we find

lim
k→∞

∥vk∥= lim
k→∞

∥uk∥=∥u0∥.

Noting that vk ⇀u0 in H, and using (6.1), we get

lim
k→∞

Iε(vk)= cm = Iε(u0)= c0,

which is a contradiction.

Case 2. ∥z0∥<1. Using Remark 6.1, we have

cm− Iε(u0)<
1
N

ω
1

N−1
N−1

α0

N−1

,

which implies that

α0<
ω

1
N−1
N−1

[N(cm− Iε(u0))]
1

N−1
.

Choosing τ>0 sufficiently close to 0 and setting

L(φ)= cm+
∫

B
F(x,φ)dx+ε

∫
B

hφdx.

We obtain for some δ>0 that

(1+τ)α0∥vk∥
N

N−1 ≤
ω

1
N−1
N−1∥vk∥

N
N−1

[N(cm− Iε(u0))]
1

N−1
−δ=

ω
1

N−1
N−1(NL(vk))

1
N−1 +ok(1)

[N(cm− Iε(u0))]
1

N−1
−δ.
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Notice that
L(vk)= cm+

∫
B

F(x,u0)dx+ε
∫

B
hu0dx+ok(1),

and (
cm+

∫
B

F(x,u0)dx+ε
∫

B
hu0dx

)
(1−∥z0∥N)≤ cm− Iε(u0),

where we have used the definition of z0 and∫
B

F(x,u0)dx+ε
∫

B
h(x)u0dx=−Iε(u0)+

1
N
∥u0∥N .

Thus, for k>0 sufficiently large, we get

(1+τ)α0∥vk∥
N

N−1 ≤
ω

1
N−1
N−1

(1−∥z0∥N)
1

N−1
−δ<

ω
1

N−1
N−1

(1−∥z0∥N)
1

N−1
. (6.2)

Since f has critical growth, for every τ>0 and q>1, there exist Rτ >0 and Cτ,q >0
such that

| f (x,t)|q ≤Cτ,q exp
{

Neα0(1+τ)|t|
N

N−1

}
, ∀ |t|≥Rτ, uniformly in x.

Therefore,∫
B
| f (x,vk)|qdx=

∫
{|uk |≤Rτ}

| f (x,vk)|qdx+
∫
{|vk |≥Rτ}

| f (x,vk)|qdx

≤π max
B×[−Rτ ,Rτ ]

| f (x,s)|q+Cτ,q

∫
B

exp
{

Neα0(1+τ)|vk |
N

N−1

}
dx.

Using Lemma 2.1 and (6.2), we find∫
B

exp
{

Neα0(1+τ)|vk |
N

N−1

}
dx=

∫
B

exp
{

Ne(1+τ)α0∥vk∥
N

N−1 (
vk

∥vk∥
)

N
N−1
}

dx≤C. (6.3)

Thus, we get ∫
B
| f (x,vk)|qdx≤C.

By the Hölder inequality,

∫
B

f (x,vk)(vk−u0)dx≤
(∫

B
| f (x,vk)|qdx

) 1
q

∥vk−u0∥q′ →0,

as k→∞, where q′= q
q−1 . From this convergence and by I′ε(vk)(vk−u0)→0, we have∫
B

ω(x)|∇vk|N−2∇vk∇(vk−u0)dx→0 as k→∞.
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Moreover, since vk ⇀u0 in H, we have∫
B

ω(x)|∇u0|N−2∇u0∇(vk−u0)dx→0 as k→∞.

Using the elementary inequality that (see [23]), for a,b∈RN ,

(
|a|N−2a−|b|N−2b

)
·(a−b)≥

{
|a−b|2, N=2;

1
2N−1 |a−b|N , N≥3,

we get ∫
B
|∇vk−∇u0|N ω(x)dx

≤C
∫

B
(|∇vk|N−2∇vk−|∇u0|N−2∇u0)(∇vk−∇u0) ω(x)dx.

This implies that
∥vk−u0∥→0 as k→∞,

i.e., vk →u0 in H. Thus Iε(vk)→ Iε(u0)= c0, which is a contradiction. Therefore u0 ̸=uM
and the proof is complete.
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[19] do Ó J. M., Medeiros E. and Severo U., On a quasilinear nonhomogeneous elliptic equation
with critical growth in RN . J. Differential Equations, 246 (2009), 1363-1386.

[20] Zhao L., Exponential problem on a compact Riemannian manifold without boundary. Non-
linear Anal., 75 (2012), 433-443.
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