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Abstract. The incompressible limit of nonisentropic ideal magnetohydrodynamic equ-
ations with general initial data in the whole space R3 is proved in this paper. The uni-
form estimates of solutions with respect to the Mach number are obtained by using
energy estimate. Strong convergence results of the smooth solutions are established
by using Strichartz’s estimates in the whole space.
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1 Introduction

1.1 The model

We write the three-demensional nonisentropic compressible magnetohydrodynamic equa-
tions in R3 in the following form:

∂tρ+∇·(ρu)=0,

ρ(∂tu+u·∇u)+∇p+H×(∇×H)=0,

∂tH−∇×(u×H)=0, ∇·H=0,

∂tS+u·∇S=0,

(1.1)
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where ρ>0 is the density of the fliud, u=(u1,u2,u3)T is the velocity, H=(H1,H2,H3)T is
the magnetic field, and S is the entropy of the fluid. p= p(ρ,S)>0 is the pressure, which
is a smooth function of the density and the entropy.

We begin to choose the entropy S and the pressure p as independent thermodynamic
variables and let the density ρ be a well-defined function ρ=ρ(/;;), where ρ(·,·) satisfies
ρ>0 and ∂ρ

∂p >0. Then we rewrite the Eqs. (1.1) in an appropriate nondimensional form

a(∂t p+u·∇p)+∇·u=0,

ρ(∂tu+u·∇u)+
1
ε2∇p+H×(∇×H)=0,

∂tH+u·∇H−H ·∇u+H∇·u=0, ∇·H=0,

∂tS+u·∇S=0,

(1.2)

where a(p,S)= 1
ρ

∂ρ
∂p and ε>0 denotes the scaled Mach number for the entity of the slightly

compressible fluid. Next, we introduce the following scalings,

p=1+εr, S=1+εΘ, (1.3)

and rewrite the system (1.2) as

a(∂trε+uε ·∇rε)+
1
ε
∇·uε =0,

ρ(∂tuε+uε ·∇uε)+
1
ε
∇rε+Hε×(∇×Hε)=0,

∂tHε+uε ·∇Hε−Hε ·∇uε+Hε∇·uε =0, ∇·Hε =0,

∂tΘε+uε ·∇Θε =0.

(1.4)

Here we notice that a and ρ are dependent on both εrε and εΘε.
Setting Uε=(rε,uε,Hε,Θε), we can rewrite the system (1.4) into the following compact

symmetric form

A0∂tUε+
3

∑
j=1

(
Aj+

1
ε

Cj

)
∂jUε =0, (1.5)

where

A0=

a 0 0
0 ρI3 0
0 0 I4

,


