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1 Introduction

1.1 The model

We write the three-demensional nonisentropic compressible magnetohydrodynamic equa-
tions in R3 in the following form:

∂tρ+∇·(ρu)=0,

ρ(∂tu+u·∇u)+∇p+H×(∇×H)=0,

∂tH−∇×(u×H)=0, ∇·H=0,

∂tS+u·∇S=0,

(1.1)
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where ρ>0 is the density of the fliud, u=(u1,u2,u3)T is the velocity, H=(H1,H2,H3)T is
the magnetic field, and S is the entropy of the fluid. p= p(ρ,S)>0 is the pressure, which
is a smooth function of the density and the entropy.

We begin to choose the entropy S and the pressure p as independent thermodynamic
variables and let the density ρ be a well-defined function ρ=ρ(/;;), where ρ(·,·) satisfies
ρ>0 and ∂ρ

∂p >0. Then we rewrite the Eqs. (1.1) in an appropriate nondimensional form

a(∂t p+u·∇p)+∇·u=0,

ρ(∂tu+u·∇u)+
1
ε2∇p+H×(∇×H)=0,

∂tH+u·∇H−H ·∇u+H∇·u=0, ∇·H=0,

∂tS+u·∇S=0,

(1.2)

where a(p,S)= 1
ρ

∂ρ
∂p and ε>0 denotes the scaled Mach number for the entity of the slightly

compressible fluid. Next, we introduce the following scalings,

p=1+εr, S=1+εΘ, (1.3)

and rewrite the system (1.2) as

a(∂trε+uε ·∇rε)+
1
ε
∇·uε =0,

ρ(∂tuε+uε ·∇uε)+
1
ε
∇rε+Hε×(∇×Hε)=0,

∂tHε+uε ·∇Hε−Hε ·∇uε+Hε∇·uε =0, ∇·Hε =0,

∂tΘε+uε ·∇Θε =0.

(1.4)

Here we notice that a and ρ are dependent on both εrε and εΘε.
Setting Uε=(rε,uε,Hε,Θε), we can rewrite the system (1.4) into the following compact

symmetric form

A0∂tUε+
3

∑
j=1

(
Aj+

1
ε

Cj

)
∂jUε =0, (1.5)

where

A0=

a 0 0
0 ρI3 0
0 0 I4

,
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A1=



auε
1 0 0 0 0 0 0 0

0 ρuε
1 0 0 0 Hε

2 Hε
3 0

0 0 ρuε
1 0 0 −Hε

1 0 0
0 0 0 ρuε

1 0 0 −Hε
1 0

0 0 0 0 uε
1 0 0 0

0 Hε
2 −Hε

1 0 0 uε
1 0 0

0 Hε
3 0 −Hε

1 0 0 uε
1 0

0 0 0 0 0 0 0 uε
1


,

A2=



auε
2 0 0 0 0 0 0 0

0 ρuε
2 0 0 −Hε

2 0 0 0
0 0 ρuε

2 0 Hε
1 0 Hε

3 0
0 0 0 ρuε

2 0 0 −Hε
2 0

0 −Hε
2 Hε

1 0 uε
2 0 0 0

0 0 0 0 0 uε
2 0 0

0 0 Hε
3 −Hε

2 0 0 uε
2 0

0 0 0 0 0 0 0 uε
2


,

A3=



auε
3 0 0 0 0 0 0 0

0 ρuε
3 0 0 −Hε

3 0 0 0
0 0 ρuε

3 0 0 −Hε
3 0 0

0 0 0 ρuε
3 Hε

1 Hε
2 0 0

0 −Hε
3 0 Hε

1 uε
3 0 0 0

0 0 −Hε
3 Hε

2 0 uε
3 0 0

0 0 0 0 0 0 uε
3 0

0 0 0 0 0 0 0 uε
3


,

Cj =

0 eT
j 0

ej 0 0
0 0 0

, ej =(δ1j,δ2j,δ3j)
T, δij =

{
1, if i= j,
0, if i ̸= j.

We notice that the coefficient matrices have the special structures

(1) A0=A0
(
εUε

)
.

(2) For j=1,2,3,
Aj =Aj

(
Uε,εUε

)
.

(3) For j=1,2,3,
A0=(A0)

T, Aj =(Aj)
T, and Cj =(Cj)

T.

We will consider the incompressible limit of the ideal nonisentropic MHD Eq. (1.5) with
the general initial data

(rε,uε,Hε,Θε)|t=0=(rε
0,uε

0,Hε
0,Θε

0) in R3. (1.6)
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Assuming that as ε → 0, the solution (rε,uε,Hε,Θε) converges to a limit function U0 =
(r0,u0,H0,Θ0) in some sense, we expect that the limit function satisfies the following
incompressible system:

ρ(∂tu0+u0 ·∇u0)+∇π−H0 ·∇H0=0,

∂tH0+u0 ·∇H0−H0 ·∇u0=0,

∇·u0=0, ∇·H0=0,

(1.7)

for some function π, where ρ=ρ(1,1).

1.2 Previous results

There are plenty of works on the low Mach number limit to MHD equations in different
settings. We shall just mention a few of them.

For the isentropic MHD equations, Klainerman-Majda [1] first studied the incom-
pressible limit of the ideal compressible MHD equations with well-prepared initial data
in the spatially periodic case. By the convergence-stability principle, Li [2] obtained the
combined incompressible and inviscid limit of the compressible viscous MHD equations
with well-prepared initial data. The incompressible limit of the compressible viscous
MHD equations with general initial data was studied in [3–5]. For more extended re-
sults, we can refer to [4–7].

For the non-isentropic equations, Jiang et al. [8] carried out the work on the incom-
pressible limit of the full compressible MHD equations with well-prepared initial data,
where the effect of small temperature variation is taken into consideration, and Cui [9]
and Ou [10] also created progress in some extensions on bounded domain. Shortly af-
terwards, cooperated with Jiang et al. investigated in [11] the low Mach number limit
of the full compressible MHD equations with general initial data in the whole space,
when the heat conductivity and large temperature variations are present. For the ideal
compressible MHD equations, Jiang et al. [12] studied the convergence of solutions with
general initial data in the whole space, where they added some additional restrictions
to obtain the uniform estimates of solutions. Recently, Li-Zhang [13] studied the incom-
pressible limit of nonisentropic ideal MHD equations with well-prepared initial data in
both the whole space and the torus in case of removing additional restrictions mentioned
in [12]. By using the original ideas of Schochet [14], Meng-Wang [15] condsidered the
incompressible limit of nonisentropic ideal MHD equations with general initial data in
the periodic domain, where the effect of small temperature variation is taken into consid-
eration.

1.3 Notations

In this part, we give some notations used throughout this paper. The symbols C or K de-
note generic positive constants independent of ε, and f (·) and F(·) denote the continuous
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nondecreasing functions on [0,∞), which may vary from line to line. Lp(R3) (1≤ p<∞)
denotes the space of measurable functions whose p-powers are integrable with the norm
∥·∥Lp , and L∞(R3) is the space of bounded measurable functions with the norm ∥·∥L∞ .
We also denote ∥·∥L2 by ∥·∥. We denote by ⟨·,·⟩ the standard inner product in L2(R3)
with the norm ∥u∥2 = ⟨u,u⟩, and by Hk the usual Sobolev space Wk,2(R3) with the norm
∥·∥k. The notation ∥(A1,··· ,Ak)∥ means the summation of ∥Ai∥ (i= 1,··· ,k), and it also
applies to other norms. For a multi-index α = (α1,α2,α3), we define Dα = ∂α1

x1 ∂α2
x2 ∂α3

x3 and
|α|= |α1|+|α2|+|α3|. We also denote ∂xj by ∂j for convenience.

Consider the orthogonal decompostion L2(R3)=Hσ⊕Gσ with

Hσ ={u∈L2(R3) :∇·u=0 in R3}, Gσ ={∇ψ : ψ∈H1(R3)}. (1.8)

Let P be the projection onto Hσ and Q= I−P . It is widely known that P ∈L (Hm,Hm)
for any m≥0.

1.4 Our results

We have the following uniform stability and convergence result.

Theorem 1.1 (Uniform existence). Assume that the initial data Uε
0=(rε

0,uε
0,Hε

0,Θε
0)∈H3(R3)

satisfies that for all ε∈ (0,1],
∥Uε

0∥3≤M0 (1.9)

for some constant M0 > 0. Then there exist constants T > 0 and M > 0 independent of ε such
that for each ε∈ (0,1] the initial value problem (1.4), (1.6) has a classical solution Uε on [0,T]
satisfying the following uniform estimate

sup
t∈[0,T]

∥Uε(t)∥3≤M. (1.10)

Next, we state the convergence result. We will prove that the fast parts rε and Quε

converge to 0 by using the dispersive properties of the fast equations.

Theorem 1.2 (Incompressible limit in the whole space). Let the assumption of Theorem 1.1
holds. We assume that the intitial data (rε

0,uε
0,Hε

0,Θε
0) converge to (r,u,H,Θ) in H3(R3) as ε→0.

Then there exists a function U0=(r0,u0,H0,Θ0), such that the solution of problem (1.4) and (1.6)
satisfies

(rε,uε,Hε,Θε)→ (r0,u0,H0,Θ0)

weakly-* in L∞([0,T];H3(R3)) and strongly in Cloc((0,T]×R3) as ε→0. Moreover, (u0,H0) is
the solution in C([0,T];H3(R3)) of the incompressible MHD Eqs. (1.7) with initial data (Pu,H)
and ρ=ρ(1,1).
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In the present paper, the incompressible limit of ideal nonisentropic MHD equations
with general initial data in R3 will be considered. It needs to be admitted that the problem
becomes even more complex when considering the case of large entropy variation. To be
precise, it is difficult to show this cancelation due to the strong coupling of hydrodynamic
motion and magnetic field for the large entropy variation case since the coefficients a and
ρ depend on (ϵrϵ,Sϵ). In order to overcome the above difficulty, Jiang et al. [12] added
some additional restrictions to obtain the uniform estimates and used the original ideas
of Métivier and Schochet [16] to prove the convergence of solutions. Moreover, Li and
Zhang [13] obtained the stronger convergence result than [12] where they considered the
well-prepared initial data. Compared with [12, 13], we no longer need additional restric-
tions of function space and well-prepared initial data, when we consider small variation
of entropy in the sense of (1.3). Moreover, we get a stronger convergence result than [15].
Thanks to the fact that A0 only depends on εUε, we can perform energy estimates to
(1.4) as in [1, 17]. However, the general initial data will lead to ∥∂tUε∥2 being O(ε−1),
which implies that we haven’t got any uniform bounds for some norm of the first order
time derivative of solution which is important for the convergence theory. To prove the
convergence of solution, we need to use the original ideas of Ukai [18].

This paper is arranged as follows. In Section 2, we shall perform energy estimates
to (1.4), and then give the proof Theorem 1.1. Finally, we shall prove Theorems 1.2 in
Section 3.

2 Uniform estimates

For fixed ε>0, there exists a local in time unique classical solution of (1.4) and (1.6) (see
[19, Theorem 2.1]). The key point in the proof of Theorem 1.1 is to establish the uniform
estimate (1.10). Throughout this section Uε will be denoted by U, and the corresponding
superscript ε used in other notation is omitted for simplicity of presentation.

We can perform energy estimates to (1.4) as follows. For any multi-index α=(α1,α2,α3),
applying Dα with |α|≤3 to (1.4), we deduce that

a(∂tDαr+u·∇Dαr)+
1
ε
∇·Dαu=Cr,

ρ(∂tDαu+u·∇Dαu)+
1
ε
∇Dαr+

1
2
∇Dα|H|2−H ·∇DαH=Cu,

∂tDαH+u·∇DαH−H ·∇Dαu+H∇·Dαu=CH,

∂tDαΘ+u·∇DαΘ=CΘ,

(2.1)

where the commutators are given by

Cr =−[Dα,a]∂tr−[Dα,au·∇]r,

Cu =−[Dα,ρ]∂tu−[Dα,ρu·∇]u−[Dα,H×](∇×H),
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CH =−[Dα,u·∇]H+[Dα,H ·∇]u−[Dα,H]∇·u,

CΘ =−[Dα,u·∇]Θ.

Multiplying (2.1) by DαU, integrating over R3, and integrating by parts give that

1
2

d
dt

∫
R3

(
a|Dαr|2+ρ|Dαu|2+|DαH|2+|DαΘ|2

)
dx

=
1
2

∫
R3

(
(∂ta+∇·(au))|Dαr|2+∇·u|DαH|2+∇·u|DαΘ|2

)
dx

+
∫

R3

(
1
2
∇Dα|H|2 ·Dαu+(H ·DαH)∇·Dαu

)
dx

+
∫

R3
((H ·∇Dαu)·DαH+(H ·∇DαH)·Dαu)dx

+
∫

R3
(DαrCr+Dαu·Cu+DαH ·CH+DαΘ·CΘ)dx

=:J1+ J2+ J3+ J4, (2.2)

where the singular terms vanish by Stokes formula. Next, we will control each term on
the RHS of (2.2). Since a is smooth functions of (εr,εΘ), by the Sobolev inequality, we
have

∥∂ta∥L∞ +∥∇·(au)∥L∞ ≤F(∥U∥3).

Thus, it is easy to find that J1 can be bounded from above by

|J1||≤
1
2
(∥∂ta∥L∞ +∥∇·(au)∥L∞∥∇·u∥L∞)∥DαU∥2≤F(∥U∥3).

For J2 and J3, integrating by parts, one obtains

J2=
∫

R3

−H ·DαH− ∑
β≤α,|β|≥1

Cα,βDβH ·Dα−βH+H ·DαH

∇·Dαudx≤F(∥U∥3),

J3=
∫

R3
(−(H ·∇Dαu)·DαH+(H ·∇Dαu)·DαH)dx=0.

Finally, we study the commutator estimate J4. We just give the estimate of Cr here, and
the other terms can be controlled in the same manner. Recalling the expression of the
commutator Cr, one sees

∥Cr∥≤∥[Dα,a]∂tr∥+∥[Dα,au·∇]r∥
≲ ∑

β≤α,|β|≥1
∥Dβa·Dα−β∂tr∥+ ∑

β≤α,|β|≥1
∥Dβ(au)·Dα−β∇r∥

:=R1+R2. (2.3)
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We can use standard commutator estimates to bound R2 as follows:

R2≤F(∥U∥3). (2.4)

We use the first equation in (1.4) to replace ∂tr in R1 by ∂tr =− 1
εa∇·u−u·∇r, where,

clearly, the singular term appears. Fortunately, considering that a is a smooth solution of
(εr,εΘ) and |β|≥1, we can deduce that

R1≲ε−1 ∑
β≤α,|β|≥1

∥∥∥∥Dβa·Dα−β

(
1
a
∇·u

)∥∥∥∥
+ ∑

β≤α,j+|β|≥1

∥∥∥Dβa·Dα−β (u·∇r)
∥∥∥≤F(∥U∥3). (2.5)

Summing up (2.3)-(2.5), we conclude∫
R3

DαrCrdx≤∥Dαr∥∥Cr∥≤F(∥U∥3). (2.6)

Since the other terms in J4 can be estimated in a similar fashion, actually we find that
J4 enjoys an estimate similar to (2.6). Substituting the estimates for J1-J4 into (2.2) and
taking summation with respect to α, we obtain

d
dt

∥U∥2
3≤F(∥U∥3).

Thus, we can choose sufficiently small T>0 satisfying

sup
t∈[0,T]

∥U(t)∥2
3≤C(M0). (2.7)

Then, the uniform estimate (1.10) follows from (2.7).

3 Convergence results in the whole space

In this section, we introduce new variables by ṙε =( ρ̄
ā )

1
2 rε, and we still denote ṙε by rε for

convenience. Then we can rewrite Eq. (1.4) into the following form

∂trε+uε ·∇rε+
( ā

ρ̄ )
1
2

εa(εrε,εΘε)
∇·uε =0,

∂tuε+uε ·∇uε+
( ρ̄

ā )
1
2

ερ(εrε,εΘε)
∇rε =− 1

ρ(εrε,εΘε)
Hε×(∇×Hε),

∂tHε+uε ·∇Hε =H ·∇uε−H∇·uε, ∇·Hε =0,

∂tΘε+uε ·∇Θε =0.

(3.1)
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We set ρ(1,1)=ρ, a(1,1)= a. Then we have the compact form:

∂tUε−BUε = J(Uε,∇Uε), (3.2)

where

B :=−1
ε

(
1
āρ̄

) 1
2

 0 ∇· 01×4
∇ 03×3 03×4

04×1 04×3 04×4

,

J(Uε,∇Uε)=


−uε ·∇rε+( ā

ρ̄ )
1
2 ā−1−a−1

ε ∇·uε

ρ−1(∇×Hε)×Hε−uε ·∇uε+( ρ̄
ā )

1
2

ρ̄−1−ρ−1

ε ∇rε

Hε ·∇uε−Hε∇·uε−uε ·∇Hε

−uε ·∇Θε

.

We will study the group etB generated by operator B. Using the Fourier transform

(Fu)(ξ)= û(ξ)=(2π)−
3
2

∫
R3

e−ix·ξu(x)dx,

we readily find the solution operator etB in the form etB =F−1etB̂F , where B̂ is defined
by

B̂ :=− i
ε

(
1
āρ̄

) 1
2

 0 ξ· 01×4
ξ 03×3 03×4

04×1 04×3 04×4

.

3.1 Spectral analysis of the solution operator

The eigenvalue problem for the operator B reduces to the algebraic eigenvalue problem
for B̂ that we summarize below:

• Eigenvalue problem:
B̂w(α)

ξ =λ
(α)
ξ w(α)

ξ ;

• Eigenvlues:

λ
(1)
ξ =− i(āρ̄)−

1
2 |ξ|

ε
, λ

(2)
ξ =

i(āρ̄)−
1
2 |ξ|

ε
, λ

(α)
ξ =0, 3≤α≤8;

• Right eigenvectors:

w(1)
ξ =(āρ̄)

1
2

 1
ξ
|ξ|
0

, w(2)
ξ =(āρ̄)

1
2

−1
ξ
|ξ|
0

, w(3)
ξ =

1
|ξ|

 0
ξ⊥

0

,

w(α)
ξ =eα, 4≤α≤8.
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Then we have (
w(α)

ξ

)∗
w(α)

ξ =1, ∑
α

w(α)
ξ

(
w(α)

ξ

)∗
= I8,

where (
w(1)

ξ

)∗
=

1
2
(āρ̄)−

1
2

(
1 ξT

|ξ| 0
)

,
(

w(2)
ξ

)∗
=

1
2
(āρ̄)−

1
2

(
−1 ξT

|ξ| 0
)

,(
w(α)

ξ

)∗
=
(

w(α)
ξ

)T
, 3≤α≤8.

Moreover, it is easy to verify that P defined by Pu = F−1
(
|ξ|−2ξ⊥

(
ξ⊥

)T û(ξ)
)

is the
projection onto Hσ. Using spectral analysis, we obtain

B̂=∑
α

λ
(α)
ξ w(α)

ξ

(
w(α)

ξ

)∗, etB̂=∑
α

eλ
(α)
ξ t w(α)

ξ

(
w(α)

ξ

)∗,

etB= ∑
3≤α≤8

F−1
(

w(α)
ξ

(
w(α)

ξ

)∗F·
)
+ ∑

α=1,2
F−1

(
eλ

(α)
ξ t w(α)

ξ

(
w(α)

ξ

)∗F·
)

(3.3)

=: U1 +U ε
2(t), (3.4)

where

U1=

0 0 0
0 P 0
0 0 I4

, U ε
2(t)U= ∑

α=1,2
F−1

(
eλ

(α)
ξ tw(α)

ξ

(
w(α)

ξ

)∗
Û(ξ)

)
,

and U1U ε
2 =U ε

2U1=0.
The L∞ decay property of U ε

2(t) has been studied by [18], in which the author used
Strichartz’s estimates.

Lemma 3.1 ([18]). For any ℓ> 3
2 , there is a constant C≥0 such that for all ε∈ (0,1), t≥0 and

U∈Hℓ(R3)∩L1(R3) such that

∥U ε
2(t)U∥L∞ ≤C|ε−1t|−δ∥U∥δ

L1∥U∥1−δ
ℓ , (3.5)

with δ=1− 4
2ℓ+1 . Moreover if U∈Hℓ(R3), then for any t∗>0,

sup
t≥t∗

∥U ε
2(t)U∥L∞ →0 as ε→0. (3.6)

3.2 Convergence theorem

The uniform estimate (1.10) implies, after extracting a subsequence, the following con-
vergence:

Uε →U0 weakly-* in L∞([0,T];H3(R3)), (3.7)
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where U0=(r0,u0,H0,Θ0)∈L∞([0,T];H3(R3)). Recalling (3.2), we have

Uε(t)= etBUε
0+

∫ t

0
e(t−s)B Jε(s)ds, (3.8)

where Jε(s)= J(Uε(s),∇Uε(s)).

Lemma 3.2. There is a constant K>0 independent of ε∈ (0,1) and t∈ [0,T], and it holds that

∥Jε(t)∥L1+∥Jε(t)∥2≤K. (3.9)

Proof. Recall that

J(Uε,∇Uε)=


−uε ·∇rε+( ā

ρ̄ )
1
2 ā−1−a−1

ε ∇·uε

ρ−1(∇×Hε)×Hε−uε ·∇uε+( ρ̄
ā )

1
2

ρ̄−1−ρ−1

ε ∇rε

Hε ·∇uε−Hε∇·uε−uε ·∇Hε

−uε ·∇Θε

,

and the facts
ā−1−a−1=O(ε), ρ̄−1−ρ−1=O(ε).

By Schwarz inequality

∥Jε∥L1 ≤K
(
∥Uε∥+

∥∥∥∥ ā−1−a−1

ε

∥∥∥∥+∥∥∥∥ ρ̄−1−ρ−1

ε

∥∥∥∥)∥∇Uε∥≤K. (3.10)

Further, by Moser-type calculus inequalities ([19]), we have

∥Jε∥2≤K(1+∥Uε∥2)
2∥Uε∥3≤K.

This completes the proof of this lemma.

We decompose Uε according to the decomposition (3.4):

Uε =U1Uε+U ε
2Uε, (3.11)

U1Uε(t)=


0

Puε
0+

∫ t
0 PGε(s)ds
Hε

Θε

, (3.12)

U ε
2(t)U

ε(t)=U ε
2(t)U

ε
0+

∫ t

0
U ε

2(t−s)Jε(s)ds, (3.13)

where

Gε(s)=−Uε(s)·∇uε(s)+(
ρ̄

ā
)

1
2

ρ̄−1−ρ−1

ε
∇rε(s)− 1

ρ(s)
Hε(s)×(∇×Hε(s)). (3.14)

We will prove the following estimate, in order to get the convergence of U1Uε.
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Lemma 3.3. There is a constant K>0 independent of ε∈ (0,1) and t∈ [0,T], such that it holds
that

∥U1Uε∥3+∥U1∂tUε∥2≤K. (3.15)

Proof. Since the decomposition (3.11) is orthogonal, we obtain

∥Uε∥2
3=∥U1Uε∥2

3+∥U ε
2Uε∥2

3 .

Then by uniform estimate of Uε,

∥U1Uε∥3≤∥Uε∥3≤K. (3.16)

Applying ∂t to (3.12), we have

U1∂tuε =PGε, U1∂t

(
Hε

Θε

)
=

(
Hε ·∇uε−Hε∇·uε−uε ·∇Hε

−uε ·∇Θε

)
.

Then by Lemma 3.2, and uniform estimate of Uε, we have

∥U1∂tuε∥2≤∥PGε∥2≤∥Gε∥2≤∥Jε∥2≤K, ∥U1∂tHε∥2+∥U1∂tΘε∥2≤K.

This completes the proof of the lemma.

Furthermore, by Lemma 3.1, we will prove U ε
2(t)U

ε(t) has the L∞ decay.

Lemma 3.4. For any t∗>0, it holds that

sup
t≥t∗

∥U ε
2Uε(t)∥L∞ →0 as ε→0. (3.17)

Proof. Lemma 3.1 can be applied to (3.13) with ℓ=2 and δ= 1
5 . By Lemma 3.2 we have

∥U ε
2Uε(t)∥L∞ ≤∥U ε

2Uε
0∥L∞ +Kεδ

∫ t

0
|t−s|−δ∥Jε(s)∥δ

L1∥Jε(s)∥1−δ
2 ds

≤∥U ε
2Uε

0∥L∞ +Kεδ. (3.18)

Let ε→0 and use Lemma 3.1 again, we finally complete the proof.

By Lemma 3.3 and Arzelà-Ascoli theorem, up to a subsequence

U1Uε →U∗=(0,u∗,H∗,Θ∗) strongly in Cloc([0,T];Hs′(R3)), s′<3. (3.19)

Taking account of Lemma 3.4, we then conclude that

Uε →U∗ strongly in Cloc((0,T]×R3). (3.20)
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By weak convergence (3.7) we have

(r0,u0,H0,Θ0)=(0,u∗,H∗,Θ∗) (3.21)

and Pu0=u0. This proves
∇·u0=0. (3.22)

Passing to the limit in the equations for Hε, we see that the limits H0 satisfy

∂tH0+u0 ·∇H0=H0 ·∇u0+H0∇·u0, ∇·H0=0. (3.23)

Passing to the limit in Gε we see that

Gε →−u0 ·∇u0+
1
ρ̄

H0 ·∇H0 weakly-* in L∞([0,T];H2(R3)). (3.24)

Then we can take the limit on both sides of the second equation in (3.12), i.e.,

Puε(t)=Puε
0+

∫ t

0
PGε(s)ds,

and get

u0(t)=Pu+
∫ t

0

(
−u0(s)·∇u0(s)+

1
ρ̄

H0(s)·∇H0(s)
)

ds.

Hence

∂tu0=P
(
−u0 ·∇u0+

1
ρ̄

H0 ·∇H0
)

, u0
0=Pu. (3.25)

Now, by (3.22), (3.23) and (3.25), (u0,H0) is the solution in C([0,T];H3(R3)) of following
incompressible MHD equations for a suitable pressure fuction ∇π∈L∞([0,T];H2(R3)).

ρ̄(∂tu0+u0 ·∇u0)+∇π−H0 ·∇H0=0,

∂tH0+u0 ·∇H0−H0 ·∇u0=0,

∇·u0=0, ∇·H0=0,

(u0,H0)(t=0)=(Pu,H).

(3.26)

Moreover, the uniqueness of the limit function implies that the convergence holds as ε→0
without restricting to a subsequence. This completes the proof of Theorem 1.2.
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