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Abstract. We study a system of equations arising in the Chern-Simons model on finite
graphs. Using the iteration scheme and the upper and lower solutions method, we get
existence of solutions in the non-critical case. The critical case is dealt with by priori
estimates. Our results generalize those of Huang et al. (Journal of Functional Analysis
281(10) (2021) Paper No. 109218).
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1 Introduction

The Chern-Simons models describe gauge fields governed by Chern-Simons type dy-
namics, and explain certain phenomena in the fields of particle physics, condensed mat-
ter physics and so on [1–3]. Some Chern-Simons models can be reduced to elliptic equa-
tions with exponential nonlinearities. Many studies were devoted to self-dual Chern-
Simons equations including nonrelativistic and relativistic cases, Abelian and non-Abelian
cases.

In this paper, we consider the following Chern-Simons system
∆u=−λeυH(eυ)g(eu)+4π

N1

∑
j=1

δp′j
,

∆υ=−λeuG(eu)h(eυ)+4π
N2

∑
j=1

δp′′j
,

(1.1)
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on a finite graph, where G> 0, H > 0 are increasing, C∞ functions in [0,∞); g and h are
defined by g(s2)=

∫ 1
s 2sG(s2)ds and h(s2)=

∫ 1
s 2sH(s2)ds, respectively; λ>0 is a constant;

N1 and N2 are positive integers; δp is the Dirac delta mass at vertex p. The system (1.1)
was proposed in [4] to study the U(1)×U(1) Chern-Simons model with a general Higgs
potential. For the special case G≡ 1 and H ≡ 1, the existence of solutions to the system
(1.1) was obtained in [5,6], and the discrete form of (1.1) on finite graphs was investigated
in [7]. For more results on discrete equations with exponential nonlinearities, one may
refer to [8–16].

We write G = (V,E) to denote a connected finite graph, where V and E represent
vertices and edges, respectively. We assume the weight ωxy >0 on edge xy is symmetric.
Let µ : V →R+ be a finite measure. For functions u,υ : V →R, we define the µ-Laplace
operator by

∆u(x)=
1

µ(x) ∑
y∼x

ωxy(u(y)−u(x)), (1.2)

and let
Γ(u,υ)=

1
2µ(x) ∑

y∼x
ωxy(u(y)−u(x))(υ(y)−υ(x)), (1.3)

where y∼ x means vertex y is adjacent to vertex x. Write

|∇u|(x)=

(
1

2µ(x) ∑
y∼x

ωxy (u(y)−u(x))2

) 1
2

.

For any function f : V→R, the integral of f over V is defined by∫
V

f dµ= ∑
x∈V

µ(x) f (x).

We define the Sobolev space as in the Euclidean case by

W1,2(V)=

{
u
∣∣∣u : V→R,

∫
V

(
|∇u|2+u2)dµ<+∞

}
.

We get the following results about the existence of maximal solutions.

Theorem 1.1. There exists λc ≥ 4πmax{N1,N2}
G(1)H(1)|V| such that

(1) If λ>λc, the system (1.1) admits a unique maximal solution (uλ,υλ) in the sense that
if (u′

λ,υ′
λ) is any other solution, then uλ >u′

λ, υλ >υ′
λ. Moreover, if λ1>λ2>λc, then

uλ1 >uλ2 and υλ1 >υλ2 .

(2) If λ<λc, the system (1.1) admits no solution.

(3) If λ=λc, the system (1.1) admits a solution (u∗,υ∗) which satisfies u∗<uλ and υ∗<υλ

if λc <λ.


