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Abstract. We study a system of equations arising in the Chern-Simons model on finite
graphs. Using the iteration scheme and the upper and lower solutions method, we get
existence of solutions in the non-critical case. The critical case is dealt with by priori
estimates. Our results generalize those of Huang et al. (Journal of Functional Analysis
281(10) (2021) Paper No. 109218).
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1 Introduction

The Chern-Simons models describe gauge fields governed by Chern-Simons type dy-
namics, and explain certain phenomena in the fields of particle physics, condensed mat-
ter physics and so on [1–3]. Some Chern-Simons models can be reduced to elliptic equa-
tions with exponential nonlinearities. Many studies were devoted to self-dual Chern-
Simons equations including nonrelativistic and relativistic cases, Abelian and non-Abelian
cases.

In this paper, we consider the following Chern-Simons system
∆u=−λeυH(eυ)g(eu)+4π

N1

∑
j=1

δp′j
,

∆υ=−λeuG(eu)h(eυ)+4π
N2

∑
j=1

δp′′j
,

(1.1)
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on a finite graph, where G> 0, H > 0 are increasing, C∞ functions in [0,∞); g and h are
defined by g(s2)=

∫ 1
s 2sG(s2)ds and h(s2)=

∫ 1
s 2sH(s2)ds, respectively; λ>0 is a constant;

N1 and N2 are positive integers; δp is the Dirac delta mass at vertex p. The system (1.1)
was proposed in [4] to study the U(1)×U(1) Chern-Simons model with a general Higgs
potential. For the special case G≡ 1 and H ≡ 1, the existence of solutions to the system
(1.1) was obtained in [5,6], and the discrete form of (1.1) on finite graphs was investigated
in [7]. For more results on discrete equations with exponential nonlinearities, one may
refer to [8–16].

We write G = (V,E) to denote a connected finite graph, where V and E represent
vertices and edges, respectively. We assume the weight ωxy >0 on edge xy is symmetric.
Let µ : V →R+ be a finite measure. For functions u,υ : V →R, we define the µ-Laplace
operator by

∆u(x)=
1

µ(x) ∑
y∼x

ωxy(u(y)−u(x)), (1.2)

and let
Γ(u,υ)=

1
2µ(x) ∑

y∼x
ωxy(u(y)−u(x))(υ(y)−υ(x)), (1.3)

where y∼ x means vertex y is adjacent to vertex x. Write

|∇u|(x)=

(
1

2µ(x) ∑
y∼x

ωxy (u(y)−u(x))2

) 1
2

.

For any function f : V→R, the integral of f over V is defined by∫
V

f dµ= ∑
x∈V

µ(x) f (x).

We define the Sobolev space as in the Euclidean case by

W1,2(V)=

{
u
∣∣∣u : V→R,

∫
V

(
|∇u|2+u2)dµ<+∞

}
.

We get the following results about the existence of maximal solutions.

Theorem 1.1. There exists λc ≥ 4πmax{N1,N2}
G(1)H(1)|V| such that

(1) If λ>λc, the system (1.1) admits a unique maximal solution (uλ,υλ) in the sense that
if (u′

λ,υ′
λ) is any other solution, then uλ >u′

λ, υλ >υ′
λ. Moreover, if λ1>λ2>λc, then

uλ1 >uλ2 and υλ1 >υλ2 .

(2) If λ<λc, the system (1.1) admits no solution.

(3) If λ=λc, the system (1.1) admits a solution (u∗,υ∗) which satisfies u∗<uλ and υ∗<υλ

if λc <λ.
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We also employ the iteration scheme as described in [4, 6, 17], while use different
methods in the proof of the case (3) in Theorem 1.1. Our results generalize those of
Huang et al. [7].

2 Proof of the main results

Let (u0,υ0) be a solution to the system
∆u=−4πN1

|V| +4π
N1

∑
j=1

δp′j
,

∆υ=−4πN2

|V| +4π
N2

∑
j=1

δp′′j
.

(2.1)

Set u′=u0+u and υ′=υ0+υ if (u′,υ′) is a solution to system (1.1). Substituting them into
(1.1) gives 

∆u=−λeυ0+υH(eυ0+υ)g(eu0+u)+
4πN1

|V| ,

∆υ=−λeu0+uG(eu0+u)h(eυ0+υ)+
4πN2

|V| .
(2.2)

We say that (u−,υ−) is a lower solution of (2.2) if it satisfies
∆u−≥−λeυ0+υ− H(eυ0+υ−)g(eu0+u−)+

4πN1

|V| ,

∆υ−≥−λeu0+u−G(eu0+u−)h(eυ0+υ−)+
4πN2

|V| .
(2.3)

Let (u1,υ1)=(−u0,−υ0). We carry out the following iteration procedure
(∆−K)un+1=−λeυ0+υn H(eυ0+υn)g(eu0+un)−Kun+

4πN1

|V| ,

(∆−K)υn+1=−λeu0+un G(eu0+un)h(eυ0+υn)−Kυn+
4πN2

|V| .
(2.4)

Lemma 2.1. Let {(un,υn)} be the sequence determined by (2.4). Then for any lower solution
(u−,υ−) of (2.2), there holds {

u1>u2> ···>un > ···>u−,

υ1>υ2> ···>υn > ···>υ−.
(2.5)

Furthermore, if (2.4) has a lower solution, it admits a unique maximal solution (uλ,υλ) in the
sense that if (u′

λ,υ′
λ) is any other solution, then uλ >u′

λ, υλ >υ′
λ.
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Proof. We will prove it by the induction method. For n= 1, by the iteration scheme, we
have 

(∆−K)(u2−u1)=4π
N1

∑
j=1

δp′j
,

(∆−K)(υ2−υ1)=4π
N2

∑
j=1

δp′′j
.

(2.6)

Then the maximum principle, i.e., Lemma 4.1 in [17] indicates u2≤u1 and υ2≤υ1. Suppose
that u2−u1 attains the maximum 0 at some x0∈V. Then by (2.6), we obtain ∆(u2−u1)(x0)≥
0. However, by (1.2), ∆(u2−u1)(x0)≤0. Hence, (u2−u1)(x)= (u2−u1)(x0)=0 if x∼ x0,
which yields (u2−u1)(x)≡ 0 since G is connected. This leads to a contradiction with
the inequality (∆−K)(u2−u1)> 0 at p′j. Therefore, u2 < u1, and similarly, υ2 < υ1. Now
suppose that {

u1> ···>un,

υ1> ···>υn.
(2.7)

Choose K>λH(1)G(1). It is seen from (2.4) that

(∆−K)(un+1−un)

=−λeυ0+υn H(eυ0+υn)g(eu0+un)+λeυ0+υn−1 H(eυ0+υn−1)g(eu0+un−1)−K(un−un−1)

≥−λH(1)
(

g(eu0+un)−g(eu0+un−1)
)
−K(un−un−1)

=
(

λH(1)eξ G(eξ)−K
)
(un−un−1)

≥(λH(1)G(1)−K)(un−un−1)

>0,

where we have used the mean value theorem and u0+un ≤ ξ ≤ u0+un−1. Applying the
same method as used in proving u2<u1, we obtain un+1<un. Hence, we get

u1> ···>un > ···.

Similarly, there also holds
υ1> ···>υn > ···.

Next we prove un >u− and υn >υ− for any n. For n=1, we derive that

∆(u−−u1)≥−λeυ0+υ− H(eυ0+υ−)g(eu0+u−)+4π
N1

∑
j=1

δp′j

=−λeυ0+υ− H(eυ0+υ−)
[
g(eu0+u−)−g(eu0+u1)

]
+4π

N1

∑
j=1

δp′j
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=λeυ0+υ− H(eυ0+υ−)eξ G(eξ)(u−−u1)+4π
N1

∑
j=1

δp′j
, (2.8)

where ξ lies between u−−u1 and 0. Noting that G is finite, we have that there exists
x0 such that (u−−u1)(x0)=maxx∈V (u−−u1)(x). Assuming that (u−−u1)(x0)≥0, then
by (2.8) we have ∆(u−−u1)(x0)≥0. Again, we have ∆(u−−u1)(x0)≤0 by (1.2). Hence,
(u−−u1)(x)=(u−−u1)(x0) if x∼x0, and (u−−u1)(x)≡(u−−u1)(x0) since G is connected,
which contradicts (2.8) at p′j. Hence, the assumption is not true and u−< u1. Similarly,
υ−<υ1. For some n≥1, assume that u−<un−1 and υ−<υn−1. In view of (2.3) and (2.4),
we arrive at

(∆−K)(u−−un)≥−λeυ0+υ− H(eυ0+υ−)g(eu0+u−)+λeυ0+υn−1 H(eυ0+υn−1)g(eu0+un−1)

−K(u−−un−1)

≥−λeυ0+υn−1 H(eυ0+υn−1)
(

g(eu0+u−)−g(eu0+un−1)
)
−K(u−−un−1)

=λeυ0+υn−1 H(eυ0+υn−1)eξ G(eξ)(u−−un−1)−K(u−−un−1)

≥(λH(1)G(1)−K)(u−−un−1)

>0,

where u−+u0 ≤ ξ ≤ un−1+u0. By the maximum principle, we have u−≤ un. Using the
same argument as before, we get u−<un. Similarly, υ−<υn.

It is easy to see that if the system (2.2) has a lower solution, then it admits a solution
(uλ,υλ) = limn→∞(un,υn). If (u′

λ,υ′
λ) is any other solution, noting that (u′

λ,υ′
λ) is also a

lower solution of (2.2), there holds uλ≥u′
λ, υλ≥υ′

λ. Furthermore, proceeding analogously
as before, we get

(∆−K)(u′
λ−uλ)≥ (λH(1)G(1)−K)(u′

λ−uλ)≥0.

Assuming that maxx∈V(u′
λ−uλ)(x)=(u′

λ−uλ)(x0)=0 for some x0∈V, then we conclude
that ∆(u′

λ−uλ)(x0)≥ 0. Hence (u′
λ−uλ)(x)= 0 if x∼ x0. The connectedness of G leads

to (u′
λ−uλ)(x)≡ 0. Similarly, υ′

λ(x)≡ υλ(x). This contradicts the assumption (uλ,υλ) ̸=
(u′

λ,υ′
λ). Therefore, uλ > u′

λ, υλ > υ′
λ. Thus, in this sense, (uλ,υλ) is a unique maximal

solution.

Lemma 2.2. The system (2.2) has a solution if λ is big enough.

Proof. Observe that the functions u0 and υ0 are bounded since G is finite. Thus, there
exists (c1,c2) such that u0−c1 <0 and υ0−c2 <0. Let (u−,υ−)= (−c1,−c2). It is obvious
that 

∆u−≥−λeυ0+υ− H(eυ0+υ−)g(eu0+u−)+
4πN1

|V| ,

∆υ−≥−λeu0+u−G(eu0+u−)h(eυ0+υ−)+
4πN2

|V| ,
(2.9)
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if λ is big enough. Hence (u−,υ−) is a lower solution of the system (2.2). This guarantees
the existence of the solution.

Lemma 2.3. There exists λc >0 such that if λ>λc, the system (2.2) admits a solution, while if
λ<λc, the system (2.2) admits no solution.

Proof. If the system (2.2) admits a solution (u,υ), then by integrating both sides of equa-
tions in (2.2) on V, we get the necessary condition

λ≥ 4πmax{N1,N2}
G(1)H(1)|V| . (2.10)

Define the set

Λ :=
{

λ>0
∣∣ λ is such that the system (2.2) has a solution

}
.

Assume that λ∈Λ and denote by (uλ,υλ) the solution to the system (2.2). For λ1∈Λ and
λ1<λ2, it follows from (2.2) that (uλ1 ,υλ1) is a lower solution for (2.2) with λ=λ2. Hence,
we infer that [λ1,+∞)⊂Λ and Λ is an interval. Denote λc= inf{λ|λ∈Λ}. The inequality
(2.10) yields λc ≥ 4πmax{N1,N2}

G(1)H(1)|V| . This completes the proof.

Lemmas 2.1 and 2.3 indicate that if λ> λc, the system (2.2) has a maximal solution.
Denote by {(uλ,υλ)|λ>λc} the family of maximal solutions of (2.2). Assume λ1>λ2>λc.
It is easy to check that

∆uλ2 =−λ2eυ0+υλ2 H(eυ0+υλ2 )g(eu0+uλ2 )+
4πN1

|V|

=−λ1eυ0+υλ2 H(eυ0+υλ2 )g(eu0+uλ2 )+
4πN1

|V|
+(λ1−λ2)eυ0+υλ2 H(eυ0+υλ2 )g(eu0+uλ2 )

≥−λ1eυ0+υλ2 H(eυ0+υλ2 )g(eu0+uλ2 )+
4πN1

|V| .

Similarly,

∆υλ2 ≥−λ1eu0+uλ2 G(eu0+uλ2 )h(eυ0+υλ2 )+
4πN2

|V| .

Hence, (uλ2 ,υλ2) is a lower solution of (2.2) with λ=λ1. Thus, uλ1 ≥uλ2and υλ1 ≥ υλ2 by
Lemma 2.1. Furthermore, the same argument as before leads to the inequality

∆(uλ2−uλ1)>λ1G(1)H(1)(uλ2−uλ1).

Assuming that maxx∈V(uλ2−uλ1)(x)=(uλ2−uλ1)(x0)=0 for some x0∈V. It follows that
∆(uλ2−uλ1)(x0)> 0, which is impossible. Hence uλ1(x)>uλ2(x) for all x∈V. Similarly,
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υλ1 >υλ2 . Next we use priori estimates to deal with the critical case. We make the decom-
position uλ = ūλ+u′

λ, where ūλ =
1
|V|
∫

V uλdµ and u′
λ =uλ−ūλ. By (2.2), we get

∥∇u′
λ∥2

2=λ
∫

V
eυ0+υλ H(eυ0+υλ)g(eu0+uλ)u′

λdµ

≤λG(1)H(1)
∫

V
|u′

λ|dµ≤Cλ|V| 1
2 ∥∇u′

λ∥2,

where we have used the Poincaré inequality, i.e., (Lemma 6, [12]). Hence

∥∇u′
λ∥2≤Cλ. (2.11)

Noting u0+uλ =u0+ūλ+u′
λ <0, by integration on V, we get

ūλ <− 1
|V|

∫
V

u0(x)dµ. (2.12)

By integrating the second equation in (2.2) on V, it yields

λ
∫

V
eu0+uλ dµ≥ 4πN2

G(1)H(1)
. (2.13)

Using the Trudinger-Moser inequality, i.e., (Lemma 7, [12]), we obtain

∫
V

eu0+uλ dµ=
∫

V
eu0+ūλ+u′

λ dµ≤eūλ max
x∈V

eu0

∫
V

eu′
λ dµ

≤Ceūλ

∫
V

e
∥∇u′

λ∥2
u′

λ
∥∇u′

λ
∥2 dµ≤Ceūλ

∫
V

e
∥∇u′

λ∥2
2+

|u′
λ
|2

4∥∇u′
λ
∥2

2 dµ

≤Ceūλ e∥∇u′
λ∥2

2 . (2.14)

Then (2.13) and (2.14) give
eūλ ≥Cλ−1e−∥∇u′

λ∥2
2 ,

which together with (2.11) and (2.12) gives

|ūλ|≤C(1+λ+λ2).

Furthermore,
∥uλ∥W1,2(V)≤C(1+λ+λ2). (2.15)

Similarly,
∥υλ∥W1,2(V)≤C(1+λ+λ2). (2.16)

Set λc<λ<λc+1. Noting (2.15) and (2.16) and the fact that the space W1,2(V) is precom-
pact, we conclude uλ →u∗∈W1,2(V), υλ → υ∗∈W1,2(V), pointwisely, as λ→λc. Hence,
we deduce that

∆uλ →∆u∗, ∆υλ →∆υ∗,
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λeυ0+υλ H(eυ0+υλ)g(eu0+uλ)→λceυ0+υ∗ H(eυ0+υ∗)g(eu0+u∗),

λeu0+uλ G(eu0+uλ)h(eυ0+υλ)→λceu0+u∗G(eu0+u∗)h(eυ0+υ∗),

as λ→λc. Thus, (u∗,υ∗) is a solution of (2.2) with λ=λc. The following lemma is estab-
lished.

Lemma 2.4. If λ=λc, then the system (2.2) admits a solution.

Arguing as in proving that (uλ,υλ) is monotone, one can show that uλ>u∗ and υλ>υ∗ if
λ>λc.
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