Existence and Multiplicity of Weak Solutions for a Class of Variable Exponent Elliptic Equations

LIU Jingjing¹ and ZHAO Chunshan^{2,*}

- ¹ Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
- ² Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA.

Received 28 September 2022; Accepted 11 February 2023

Abstract. In this paper we will study the existence of one, two and three weak solutions for a class of variable exponent elliptic equations under appropriate growth conditions on the nonlinearity. Our technical approach is based on the existence theorems obtained by G. Bonanno.

AMS Subject Classifications: 35D30, 35J70 Chinese Library Classifications: O175.25

Key Words: Weak solutions; p(x)-Laplacian; weighted variable exponent Sobolev spaces.

1 Introduction

In this paper, we will consider existence and multiplicity of weak solutions of the following variable exponent equation

$$\begin{cases} -\operatorname{div} \mathbf{A}(x, \nabla u) + a(x) |u|^{p(x)-2} u + h(x) |u|^{r(x)-2} u = \lambda f(x, u), & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$
 (P_{\lambda})

where $\Omega \subset \mathbb{R}^N$ is an open bounded domain with smooth boundary, $\lambda \in \mathbb{R}$ and $\mathbf{A} : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ admits a potential \mathscr{A} , with respect to its second variable ξ . We denote by $v_1(x) \ll v_2(x)$ if

$$\operatorname{essinf}_{x \in \Omega}[v_2(x) - v_1(x)] > 0.$$

Next we will state some hypotheses on (P_{λ}) .

^{*}Corresponding author. Email addresses: jingjing830306@163.com.czhao@georgiasouthern.edu.

- (A_1) The potential $\mathscr{A} = \mathscr{A}(x,\xi)$ is a continuous function in $\Omega \times \mathbb{R}^N$, with continuous derivative with respect to ξ , $\mathbf{A} = \partial_{\xi} \mathscr{A}(x,\xi)$, and satisfies
 - (i) $\mathscr{A}(x,0) = 0$ and $\mathscr{A}(x,\xi) = \mathscr{A}(x,-\xi)$ for all $(x,\xi) \in \Omega \times \mathbb{R}^N$;
 - (ii) $\mathscr{A}(x,\cdot)$ is strictly convex in \mathbb{R}^N for all $x \in \mathbb{R}^N$;
 - (iii) There exist constants $k_1, k_2 > 0$ and an exponent $p(x) \in \mathcal{P}^{log}(\mathbb{R}^N)$ such that

$$k_1 |\xi|^{p(x)} \le \mathbf{A}(x,\xi) \cdot \xi, \qquad |\mathbf{A}(x,\xi)| \le k_2 |\xi|^{p(x)-1}$$
 (1.1)

for all $(x,\xi) \in \Omega \times \mathbb{R}^N$, where $1 \ll p(x) \ll N$, and $p(x) \in \mathcal{P}^{log}(\Omega)$ means that $p(\cdot)$ is log–Hölder continuous in Ω , i.e., there exists a constant p_{∞} satisfying

$$|p(x)-p(y)| \le \frac{k_3}{\ln\left(e+\frac{1}{|x-y|}\right)}$$
 for all $x,y \in \Omega$, $|p(x)-p_{\infty}| \le \frac{k_4}{\ln\left(e+|x|\right)}$ for all $x \in \Omega$.

 (\mathcal{A}_2) \mathscr{A} is uniformly convex, i.e., for any $\varepsilon \in (0,1)$, there exists a $\delta = \delta(\varepsilon) \in (0,1)$ such that either $|u-v| \leq \varepsilon \max\{|u|,|v|\}$, or $\mathscr{A}(x,(\xi+\eta)/2) \leq \frac{1}{2}(1-\delta)[\mathscr{A}(x,\xi)+\mathscr{A}(x,\eta)]$ for any $x,\xi,\eta \in \Omega$.

 (\mathcal{H}_1) (i) $a(x) \in L^{\infty}(\Omega)$, and for some constant $k_5 \in (0,1]$ the coefficient a(x) satisfies

$$a(x) \ge k_5(1+|x|)^{-p(x)} \qquad \text{for all } x \in \Omega; \tag{1.2}$$

(ii) $0 < h(x) \in L^1(\Omega)$ and the exponent r(x) is continuous in Ω .

 (f_1) $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function satisfying

$$|f(x,t)| \le k_6 + k_7 |t|^{q(x)-1}$$
, for all $(x,t) \in \Omega \times \mathbb{R}$, (1.3)

here k_6 , k_7 are two positive constants, $q(x) \in C(\overline{\Omega})$ and $q(x) \ll p(x)$, $q(x) \ll r(x)$.

By condition (A_1) , we have

$$\frac{k_1}{p(x)} |\xi|^{p(x)} \le \mathcal{A}(x,\xi) \le \mathbf{A}(x,\xi) \cdot \xi \le k_2 |\xi|^{p(x)}. \tag{1.4}$$

A typical example of elliptic operator **A** is $\mathbf{A}(x, \nabla u) = |\nabla u|^{p(x)-2} \nabla u$, so that

$$-\operatorname{div}\mathbf{A}(x,\nabla u) = -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u) = -\triangle_{p(x)}u,$$

which is called the p(x)-Laplacian and satisfies (A_1) and (A_2) if $p \in \mathcal{P}^{\log}(\mathbb{R}^N)$ and $1 < p^- \le p^+ < N$. Here

$$p^+ = \operatorname{esssup}_{x \in \Omega} p(x), \quad p^- = \operatorname{essinf}_{x \in \Omega} p(x).$$

Eq.(P_{λ}) has been studied in many papers, for example [1–10]. They proved existence, nonexistence and multiplicity results in bounded domain [1] and unbounded domains [9] respectively. The study of the existence of entire solutions of (P_{λ}) with f(x,u) =