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Abstract. We consider the following Schrödinger-Newton system with negative criti-
cal nonlocal term {

−∆u−ϕ|u|3u= a(x) f (u), in R3,
−∆ϕ= |u|5, in R3,

where a and f satisfy some certain conditions. By using the variational method and
analytical techniques, we obtain the existence of positive ground state solutions which
improves the recent results in the literature.
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1 Introduction

In this paper, we study the existence of positive ground state solutions for the following
Schrödinger-Newton system with negative critical nonlocal term{

−∆u−ϕ|u|3u= a(x) f (u), in R3,
−∆ϕ= |u|5, in R3,

(1.1)
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where a and f satisfy the following assumptions:
(A) a∈L

3
2 (R3)

⋂
L∞(R3), a(x)≥0 and a(x) ̸≡0 ;

(F1) f ∈C(R,R), f (s)≥0 if s≥0 and f (s)=0 if s≤0;
(F2) f (s)= o(s) as s→0+;
(F3) lims→+∞

f (s)
s5 =0;

(F4) there exists a θ0∈ (0,S/|a| 3
2
) such that[

f (τ)
τ3 − f (tτ)

(tτ)3

]
sign(1−t)+θ0

|1−t2|
(tτ)2 ≥0, ∀t>0, τ>0,

where |a| 3
2
=

(∫
R3
|a| 3

2 dx
) 2

3

and S is the best Sobolev constant denoted by

S= inf
u∈D1,2(R3)\{0}

∫
R3
|∇u|2dx(∫

R3
|u|6dx

) 1
3

.

The Schrödinger-Newton system was firstly put up by Perkar to explain the quantum
mechanics of a polaron. Then it was developed by Choquard giving a description of an
electron trapped in its own hold and by Penrose [1] for discussing the self-gravitating
matter. For example, a simple particle of the system with mass m is acquired by coupling
together the linear Schrödinger equation of quantum mechanics with Poisson equation
mechanics. The form of equation is as follows− h2

2m
∆u+V(x)u+Uu=0,

−∆U+4πk|u|2=0,

where u denotes the complex wave function, U is the gravitational potential energy, V is
a given potential, h is Planck’s constant and k=Gm2, G being Newton’s constant.

In the recent years, there are a lot of works dealing with solvability or multiplicity of
the Schrödinger-Newton system involving subcritical nonlocal term, we refer the reader
to [2–11] and references therein. But to the best of our knowledge, fewer papers are
devoted to the system with critical nonlocal term, such as [5, 12–17]. More precisely, Az-
zollini et al. in [12] firstly studied the Schrödinger-Newton system with critical nonlocal
term as follows 

−∆u=λu+qϕ|u|3u, x∈BR,
−∆ϕ=q|u|5, x∈BR,
u=ϕ=0, on ∂BR,

where BR is a ball in R3 centered at the origin and with radius R. By using the varia-
tional method, they obtained the nonexistence result and found a ground state solution
depending on λ.


