A Logarithmically Improved Blow-up Criterion for a Simplified Ericksen-Leslie System Modeling the Liquid Crystal Flows

Authors

  • Meng Bai School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, China
  • Qiao Liu College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China
  • Jihong Zhao College of Science, Northwest A&F University, Yangling 712100, China

DOI:

https://doi.org/10.4208/jpde.v28.n4.5

Keywords:

Ericksen-Leslie system;Navier-Stokes equations;blow-up criterion

Abstract

" In this paper, we prove a logarithmically improved blow-up criterion in terms of the homogeneous Besov spaces for a simplified 3D Ericksen-Leslie system modeling the hydrodynamic flow of nematic liquid crystal. The result shows that if a local smooth solution (u,d) satisfies $$\u222b^T_0\\frac{||u||^{\\frac{2}{1-r}}_{\\dot{B}^{-r}{\u221e,\u221e}}+||\u2207 d||\u00b2_{L^\u221e}}{1+1n(e+||u||_H^S+||\u2207 d||_H^S)}dt\u2039\u221e$$ with 0 \u2264 r \u2039 1 and s \u2265 3, then the solution (u,d) can be smoothly extended beyond the time T."

Published

2020-05-12

Issue

Section

Articles

Most read articles by the same author(s)