Existence of Renormalized Solutions for Nonlinear Parabolic Equations

Authors

  • Youssef Akdim Laboratory LSI, Faculty Polydisciplinary of Taza. University Sidi Mohamed Ben Abdellah, P. O. Box 1223 Taza Gare, Marocco
  • A. Benkirane Laboratory of Mathematical Analysis and Applications, Department of Mathematics, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796, Atlas-F`es, Morocco
  • M. EL Moumni Laboratory of Mathematical Analysis and Applications, Department of Mathematics, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796, Atlas-F`es, Morocco
  • Hicham Redwane Facult\u00e9 des Sciences et Techniques Universit\u00e9 Hassan 1, B.P. 764. Settat. Morocco

DOI:

https://doi.org/10.4208/jpde.v27.n1.2

Keywords:

Nonlinear parabolic equations;renormalized solutions;Sobolev spaces

Abstract

" We give an existence result of a renormalized solution for a class of nonlinear parabolic equations $$\\frac{\\partial b(x,u)}{\\partial t}-div(a(x,t,u,\\nabla u))+g(x,t,u,\\nabla u)+H(x,t,\\nabla u)=f,\\qquad in\\; Q_T,$$ where the right side belongs to $L^{p'}(0,T;W^{-1,p'}(\u03a9))$ and where b(x,u) is unbounded function of u and where $-div(a(x,t,u,\u2207u))$ is a Leray-Lions type operatorwith growth $|\u2207u|^{p-1}$ in \u2207u. The critical growth condition on g is with respect to \u2207u and no growth condition with respect to u, while the function $H(x,t,\u2207u)$ grows as $|\u2207u|^{p-1}$."

Published

2014-03-05

Issue

Section

Articles

Most read articles by the same author(s)