Bifurcation and Stability Analysis in Complex Cross-Diffusion Mathematical Model of Phytoplankton-Fish Dynamics

Authors

  • Hamidou Ouedraogo Universit\u00e9 Nazi BONI, Unit\u00e9 de Formation et de Recherche en Sciences et Techniques (UFR\/ST), D\u00e9partement de Math\u00e9matiques et Informatiques, 01 BP 1091 Bobo Dsso 01, Burkina Faso
  • Wendkouni Ouedraogo Universit\u00e9 Nazi BONI, Unit\u00e9 de Formation et de Recherche en Sciences et Techniques (UFR\/ST), D\u00e9partement de Math\u00e9matiques et Informatiques, 01 BP 1091 Bobo Dsso 01, Burkina Faso
  • Boureima Sangar\u00e9 Universit\u00e9 Nazi BONI, Unit\u00e9 de Formation et de Recherche en Sciences et Techniques (UFR\/ST), D\u00e9partement de Math\u00e9matiques et Informatiques, 01 BP 1091 Bobo Dsso 01, Burkina Faso

DOI:

https://doi.org/10.4208/jpde.v32.n3.2

Keywords:

Toxin effect;populations dynamics;predator-prey model;reaction-diffusion system;bifurcation;pattern formation.

Abstract

"

In this paper, we propose a nonlinear reaction-diffusion system describing\r\nthe interaction between toxin-producing phytoplankton and fish population. We analyze the effect of cross-diffusion on the dynamics of the system. The mathematical\r\nstudy of the model leads us to have an idea on the existence of a solution, the existence\r\nof equilibria and the stability of the stationary equilibria. Finally, numerical simulations performed at two-dimensions allowed us to establish the formation of spatial\r\npatterns and a threshold of release of the toxin, above which we talk about the\r\nphytoplankton blooms.<\/p>"

Published

2019-10-14

Issue

Section

Articles