Regularity Results for Minimizers of Certain Functional Having Nonquadratic Growth with Obstacles

Authors

  • Minchun Hong

Keywords:

Degenerate variational integral;obstacle;partial regularity

Abstract

We prove partial regularity for minimizers of degenerate variational integrals ∫_Ω F(x, u, Du)dx with obstacles of either the form (i) μ_f = {u ∈ H^{1,m} (Ω,\mathbb{R}^N)|u^N ≥ f_1(u¹, ... ,u^{N-1}) + f_2(x) a.e.} or (ii) μ_N = {u ∈ H^{1,m}(Ω,\mathbb{R}^N)|u^i(x) ≥ h^i(x), a.e.; i=1, ... ,N} The typical mode of variational integrals is given by ∫_Ω [a^{αβ}(x, u)b_{ij}(x, u)D_αu^i D_βu^i]^{\frac{m}{2}}dx, m ≥ 2

Published

1997-10-01

Issue

Section

Articles