Minimal Positive Entire Solution of Semilinear Elliptic Equation
Keywords:
Super and sub-solution method;minimal positive solution;singular semilinear elliptic equationAbstract
In this paper, the singular semilinear elliptic equation Δu + q(x)u^α + p(x)u^{-β} - h(x)u^{-ϒ} = 0, x ∈ R^N, N ≥ 3, is studied via the super and sub-solution method, where Δ is the Laplacian operator, α ∈ [0, 1), β > 0, and ϒ ≥ 1 are constants. Under a set of suitable assumptions on functions q(x), p(x) and h(x), it is proved that there exists for the equation one and only one minimal positive entire solution.
Downloads
Published
2005-05-02
Issue
Section
Articles