Existence of Weak Solutions for the Cahn-Hilliard Reaction Model Including Elastic Effects and Damage.

Authors

  • Christiane Kraus Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
  • Arne Roggensack Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

DOI:

https://doi.org/10.4208/jpde.v30.n2.2

Keywords:

Cahn-Hilliard reaction system;rate-dependent damage;phase separation;existence;non-linear Newton boundary condition

Abstract

In this paper, we introduce and study analytically a vectorial Cahn-Hilliard reaction model coupled with rate-dependent damage processes. The recently proposed Cahn-Hilliard reaction model can e.g. be used to describe the behavior of electrodes of lithium-ion batteries as it includes both the intercalation reactions at the surfaces and the separation into different phases. The coupling with the damage process allows considering simultaneously the evolution of a damage field, a second important physical effect occurring during the charging or discharging of batteries. Mathematically, this is realized by a Cahn-Larch systemwith a non-linear Newton boundary condition for the chemical potential and a doubly non-linear differential inclusion for the damage evolution. We show that this system possesses an underlying generalized gradient structure which incorporates the non-linear Newton boundary condition. Using this gradient structure and techniques from the field of convex analysis we are able to prove constructively the existence of weak solutions.

Published

2017-05-02

Issue

Section

Articles