Conditional Regularity of Weak Solutions to the 3D Magnetic Bénard Fluid System

Authors

  • Liangliang Ma Department of Applied Mathematics, Chengdu University of Technology, Chengdu 610059, China

DOI:

https://doi.org/10.4208/jpde.v34.n2.4

Keywords:

Magnetic Bénard fluid system, regularity criteria, conditional regularity, Morrey-Campanato space, Besov space.

Abstract

This paper concerns about the regularity conditions of weak solutions to the magnetic Bénard fluid system in $\mathbb{R}^3$. We show that a weak solution $(u,b,θ)(·,t)$ of the 3D magnetic Bénard fluid system defined in $[0,T),$ which satisfies some regularity requirement as $(u,b,θ),$ is regular in $\mathbb{R}^3×(0,T)$ and can be extended as a $C^∞$ solution beyond $T$.

Published

2021-05-28

Issue

Section

Articles