Doubly Nonlinear Degenerate Parabolic Equations with a Singular Potential for Greiner Vector Fields
DOI:
https://doi.org/10.4208/jpde.v35.n4.1Keywords:
Doubly nonlinear degenerate parabolic equations, Greiner vector fields, positive solutions, nonexistence, Hardy inequality.Abstract
The purpose of this paper is to investigate the nonexistence of positive solutions of the following doubly nonlinear degenerate parabolic equations: \begin{align*}\begin{cases} {\dfrac{\partial u}{\partial t}=\nabla_{k} \cdot \left( {u^{m-1}\left| {\nabla_{k} u} \right|^{p-2}\nabla_{k} u} \right)+V(w)u^{m+p-2}},\qquad & {\mbox{in}\ \Omega \times (0,T),} \\ {u(w,0)=u_{0} (w)\geqslant 0}, & {\mbox{in}\ \Omega ,} \\ {u(w,t)=0}, & {\mbox{on}\ \partial \Omega \times (0,T),} \end{cases} \end{align*} where $\Omega$ is a Carnot-Carathéodory metric ball in $\mathbb{R}^{2n+1}$ generated by Greiner vector fields, $V\in L_{loc}^{1} (\Omega )$, $k\in \mathbb{N}$, $m\in \mathbb{R}$, $1
0$. The better lower bound $p^*$ for $m + p_{ }$ is found and the nonexistence results are proved for $p^*\leqslant m+p<3$.