Global Well-Posedness and Asymptotic Behavior for the 2D Subcritical Dissipative Quasi-Geostrophic Equation in Critical Fourier-Besov-Morrey Spaces
DOI:
https://doi.org/10.4208/jpde.v36.n1.1Keywords:
2D quasi-geostrophic equation;subcritical dissipation;Littlewood-Paley theory;global well-posedness;long time behavior of the solution;Fourier-Besov-Morrey spaces.Abstract
In this paper, we study the subcritical dissipative quasi-geostrophic equation. By using the Littlewood Paley theory, Fourier analysis and standard techniques we prove that there exists $v$ a unique global-in-time solution for small initial data belonging to the critical Fourier-Besov-Morrey spaces $ \mathcal{F} {\mathcal{N}}_{p, \lambda, q}^{3-2 \alpha+\frac{\lambda-2}{p}}$. Moreover, we show the asymptotic behavior of the global solution $v$. i.e., $\|v(t)\|_{ \mathcal{F} {\mathcal{N}}_{p, \lambda, q}^{3-2 \alpha+\frac{\lambda-2}{p}}}$ decays to zero as time goes to infinity.