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Abstract. Physics-Informed Neural Networks (PINNs) encounter challenges in deal-
ing with imbalanced training losses, especially when there are sample points with

extremely high losses. This can make the optimization process unstable, making

it challenging to find the correct descent direction during training. In this paper,
we propose a progressive learning approach based on anomaly points awareness

to improve the optimization process of PINNs. Our approach comprises two pri-

mary steps: the awareness of anomaly data points and the update of training set.
Anomaly points are identified by utilizing an upper bound calculated from the mean

and standard deviation of the feedforward losses of all training data. In the absence

of anomalies, the parameters of the PINN are optimized using the default train-
ing data; however, once anomalies are detected, a progressive exclusion method

aligned with the network learning pattern is introduced to exclude potentially un-
favorable data points from the training set. In addition, intermittent detection is

employed, rather than performing anomaly detection in each iteration, to balance

performance and efficiency. Extensive experimental results demonstrate that the
proposed method leads to substantial improvement in approximation accuracy when

solving typical benchmark partial differential equations. The code is accessible at

https://github.com/JcLimath/Anomaly-Aware-PINN.
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1. Introduction

Scientific computing is a critical tool for enhancing human understanding and driv-

ing positive change worldwide. One significant area within this field is solving partial

differential equations (PDEs), which find extensive applications across multiple dis-

ciplines. While traditional numerical methods like finite element methods [4], finite
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volume methods [30], and finite difference methods [11] have continuously evolved

over decades to address PDEs, they still encounter challenges, especially when dealing

with high-dimensional and multi-scale PDEs [53]. In recent years, deep learning has

made groundbreaking advancements in many fields, including computer vision [42]

and natural language processing [51]. Combining deep learning methods for solving

PDEs has also gained increasing attention due to their powerful nonlinear approxima-

tion capabilities [7,13–15,19,20,34,45].

One particularly noteworthy development is the emergence of the Physical-Inform-

ed Neural Network (PINN) paradigm [3, 6, 8, 27, 31, 39, 46, 47, 52]. The core concept

underpinning PINNs revolves around the integration of partial differential equations

and their associated conditions as soft constraints within the loss function of a neural

network [21, 22, 25, 38]. This innovative approach facilitates an iterative optimiza-

tion process, allowing for the continuous refinement of the approximation as time pro-

gresses. PINNs offer several advantages over traditional numerical methods, includ-

ing its grid-free nature, capacity to handle high-dimensional equations, and seamless

integration with data. PINNs have demonstrated promising results and has found ap-

plications in diverse fields, including fluid dynamics [32, 36], bioengineering [24, 33],

and the electrical power industry [29]. However, the standard version of PINN faces

challenges during training. A major challenge is its difficulty in effectively dealing with

unbalanced training losses. In some cases, the losses for specific points within the

computational domain can be orders of magnitude higher than others, leading to their

dominance during the training process. In such scenarios, the vanilla PINN struggles to

find the optimal direction for optimization [1,16,43,49].

Previous research has tackled the challenge of addressing the loss imbalance by

adjusting the weights of various loss terms. Some works [5, 44] relied on manually

designed hyperparameters to fine-tune the weights of loss terms. However, due to their

heavy dependence on prior knowledge, these methods may not always yield optimal

solutions. Consequently, there has been a growing interest in the adaptive weighting

approach. For instance, gradient statistics were employed to harmonize the interactions

among different terms in the loss function [40], while a novel adaptive weighting ap-

proach based on the Neural Tangent Kernel (NTK) was introduced by Wang et al. [41].

In [2], the loss function was modified into a dimensionless form, with the parame-

ters determined using least squares weighted residuals method. However, these ef-

forts primarily centered on adjusting the weights of different loss components, possibly

overlooking the imbalances originating from individual data points. Recent endeavors

have sought improvements in designing the loss weights for individual points. Draw-

ing inspiration from soft multiplicative attention masks, a method was introduced by

McClenny et al. [28], where trainable weights are assigned to each individual train-

ing point. In [16], quantiles of the residuals were used to adjust the weights, leading

to a redistribution of weights of points with extreme losses towards the median. No-

tably, a distinct approach was proposed by Wang et al. [43], where instead of assigning

greater weights to sample points with larger losses, priority is given to the learning of

easy low-loss sample points. This approach significantly enhances the performance of


