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Abstract. This paper presents error analysis of a stabilizer free weak Galerkin finite

element method (SFWG-FEM) for second-order elliptic equations with low regular-
ity solutions. The standard error analysis of SFWG-FEM requires additional regular-

ity on solutions, such as H2-regularity for the second-order convergence. However,

if the solutions are in H1+s with 0 < s < 1, numerical experiments show that the
SFWG-FEM is also effective and stable with the (1 + s)-order convergence rate, so

we develop a theoretical analysis for it. We introduce a standard H2 finite element
approximation for the elliptic problem, and then we apply the SFWG-FEM to ap-

proach this smooth approximating finite element solution. Finally, we establish the

error analysis for SFWG-FEM with low regularity in both discreteH1-norm and stan-
dard L2-norm. The (Pk(T ), Pk−1(e), [Pk+1(T )]

d) elements with dimensions of space

d = 2, 3 are employed and the numerical examples are tested to confirm the theory.
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1. Introduction

The weak Galerkin finite element method (WG-FEM) is a useful numerical method

for solving partial differential equations effectively. The WG-FEM is naturally derived

from the standard finite element method (FEM) and the most important idea is to

use the generalized functions and their weak derivatives which are defined as gen-

eralized distributions. The WG method is first introduced by Wang and Ye [17, 18]

for the second-order elliptic equations, and a stabilizer term is added to WG-FEM

in order to enforce the connection of discontinuous functions across element bound-

aries [10, 11]. Then the WG method finds applications in diverse areas including el-

liptic equations [9, 27], parabolic equations [30, 31, 34, 35], second-order linear wave
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equation [6], reaction-diffusion equations [8], Stokes equations [13, 16, 32], Maxwell

equations [12, 14, 20], biharmonic equation [33], Cahn-Hilliard-Cook equation [5],

stochastic parabolic equations [36,37], eigenvalue problems [28,29], and so on. Nev-

ertheless, the stabilizer makes the finite element formulations and programming com-

plex. To remove the stabilizer term, a stabilizer free weak Galerkin finite element

method (SFWG-FEM) is introduced by Ye and Zhang [21] for the second-order ellip-

tic equations on polytopal meshes. The main idea of SFWG-FEM is raising the degree

of polynomials for weak gradient computation to increase the connectivity of weak

functions. The SFWG-FEM is firstly proposed based on a traditional weak gradient def-

inition, where the differential operator acts on the trial function, and then the element

(Pk(T ), Pk(e), [Pj(T )]
d) has been demonstrated to be reliable if j ≥ k + n − 1, where

n represents the number of element’s edges/faces [22]. Subsequently, the requirement

has been relaxed to be j ≥ k+n−2 in general, especially to be j ≥ k+n−3 when every

edge ∂T is parallel to another one [3]. Various configurations of (Pk(T ), Pl(e), [Pj(T )]
d)

with l ≥ k and j ≥ k + 1 lead to different schemes, cf. [1–3,22–26]. Later on, the defi-

nition of weak gradient operator is modified by using the standard gradient of interior

test functions instead of the divergence of trial functions [23]. And then, the finite

element space for SFWG-FEM is released to be (Pk(T ), Pk−1(e), [Pk+1(T )]
d), which re-

duces the degree of freedom and maintains the same optimal order of convergence.

In order to reach the optimal convergence order for approximating the second-

order elliptic equations, in many published literature on WG-FEM and SFWG-FEM, the

solution is usually assumed to have at least H2-smoothness [1, 23]. As a result, it is

demonstrated that the convergence rates are at least O(h) in H1-norm and O(h2) in

L2-norm with mesh-size h, respectively. However, numerical experiments show that we

have the O(hs) convergence in |||·|||-norm and O(h1+s) convergence in L2-norm when

the exact solution has only H1+s-regularity (0 < s < 1). The (1 + s)-order L2 conver-

gence analysis on WG-FEM is accomplished in [19], and the core concern in [19] is only

on analysis but without numerical experiments. There is no such theoretical analysis

for SFWG-FEM, so in this paper, we are devoted to studying the convergence analysis

on SFWG-FEM with low regularity, and to proving the discrete H1-norm and L2-norm

convergence rates to be O(hs) and O(h1+s), respectively. The numerical examples are

also tested to confirm the theory. Our strategy is divided into two steps. Firstly, we use

H2-regular Argyris elements [4] as the bases of FEM to approximate the second-order

elliptic equation whose solution has H1+s-regularity, and then we get the optimal dis-

creteH1 and L2 convergence orders to be of O(hs) and O(h1+s), respectively. Secondly,

we utilize the SFWG-FEM to approximate the H2-regular finite element solution, and

then we have the O(h) convergence in |||·|||-norm and O(h2) convergence in L2-norm,

respectively. As a consequence, we arrive at the optimal convergence rates to be O(hs)
in |||·|||-norm and O(h1+s) in L2-norm, respectively, if the exact solution of the second-

order elliptic equation is only H1+s-regular, which is an important supplementary for

the new stabilizer free weak Galerkin finite element method theory.

The paper is organized as follows. In Section 2, we apply the Argyris finite element

approximation to a second-order elliptic equation with H1+s-regularity, and provide an


