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Abstract. We present a rigorous analysis of the convergence rate of the deep mixed
residual method (MIM) when applied to a linear elliptic equation with different
types of boundary conditions. The MIM has been proposed to solve high-order par-
tial differential equations in high dimensions. Our analysis shows that MIM outper-
forms deep Ritz method and deep Galerkin method for weak solution in the Dirichlet
case due to its ability to enforce the boundary condition. However, for the Neumann
and Robin cases, MIM demonstrates similar performance to the other methods. Our
results provide valuable insights into the strengths of MIM and its comparative per-
formance in solving linear elliptic equations with different boundary conditions.

AMS subject classifications: 65N12, 65N15

Key words: Deep mixed residual method, deep neural network, error analysis, elliptic equa-

tions, Rademacher complexity.

1. Introduction

Partial differential equations (PDEs) are widely used in various fields such as sci-
ence, engineering, and finance [1,11] to model complex physical phenomena. Tra-
ditional numerical methods such as the finite difference method and finite element
method (FEM) have been successful in solving low-dimensional PDEs. However, when
it comes to high-dimensional problems, the curse of dimensionality becomes a bot-
tleneck, making classical methods inapplicable. In recent years, deep learning-based
methods [7] have emerged as a promising approach for tackling high-dimensional
PDEs. Notable examples of these methods include the deep Ritz method (DRM) [4,
8,10], the deep Galerkin method (DGM) [20], the physics informed neural network
method [19], the weak adversarial network method [22], the deep least-squares meth-
ods [3], least-squares ReLU neural network method [2] and the local deep learning
method [21]. These techniques have shown significant potential for solving high-
dimensional PDEs, offering an attractive alternative to traditional methods.
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Despite the success of deep learning methods such as DGM and DRM, they still
suffer from convergence and efficiency issues, especially when dealing with boundary
conditions. Recently, the (deep) mixed residual method (MIM) [18] has been pro-
posed to address these limitations. MIM is a novel approach that reformulates high-
order PDEs into a first-order system. This idea is similar to the local discontinuous
Galerkin method and the mixed FEM. MIM also uses the residual of the first-order
system in the least-squares sense as the loss function, which is closely related to the
least-squares FEM. Importantly, MIM can directly enforce exact boundary conditions,
including mixed boundary conditions, which are difficult to deal with in previous deep
learning methods [17]. In comparison to DGM and DRM, MIM provides better numeri-
cal approximation in most tested cases. However, rigorous analysis of the convergence
rate of MIM is currently limited, which hampers our understanding of its theoretical
properties and practical performance.

In the realm of error analysis, extensive investigations have been carried out with
respect to DRM [5, 6, 16], PINN [12,16], and the Deep Galerkin Method for weak
solutions (DGMW) [14]. Regarding the MIM, the initial analysis was conducted in [15].

This study focused on the two-layer neural network scenario and revealed that con-
vergence could be achieved by increasing the number of training samples, independent
of the network size. Additionally, it demonstrated that MIM provides more accurate
approximations of high-order derivatives compared to DRM, as confirmed through nu-
merical experiments. In this article, we extend the analysis to the case of multi-layer
neural networks and rigorously investigate the convergence rate of MIM when applied
to linear elliptic equations with different kinds of boundary conditions. To evaluate
its performance, we compare the results to existing findings for the Deep Ritz Method
(DRM) [13] and the Deep Galerkin Method for weak solutions (DGMW) [14]. We em-
ploy the same methodology that has been successfully applied to DRM with sigmoid
and tanh functions [13] and RELU [6], as well as to DGMW [14].

Specifically, we decompose the total error in MIM into three distinct components:
the approximation error, the statistical error, and the optimization error. The results
of the approximation error can be obtained by a recent work [9] which provides the
dependency of the error upon the network parameters. The derivation of the statis-
tical error is the main contribution of this work, which uses Rademacher complexity
to estimate the number of needed sampling points. The optimization error contains
information on the landscape structure of the loss function and is beyond the scope of
this work. Although the main idea is similar to previous work [13,14], there are some
differences worth mentioning:

(i) MIM uses the residual of the first-order system in the least-squares sense as the
loss function, which needs an additional insensible variation condition on the
coefficients of the elliptic problem to make the loss function non-degenerate.

(ii) The neural network that MIM uses has a multi-dimensional output function,
which makes the approximation analysis slightly different.



