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Abstract. An extended Courant element is constructed on an n dimensional poly-
tope K, which reduces to the usual Courant element when K is a simplex. The set

of the degrees of freedom consists of function values at all vertices of K, while the

shape function space PK is formed by repeatedly using the harmonic extension from
lower dimensional face to higher dimensional face. Several fundamental estimates

are derived on this element under reasonable geometric assumptions. Moreover,

the weak maximum principle holds for any function in PK , which enables us to use
the element for approximating an obstacle problem in three dimensions. The corre-

sponding optimal error estimate in H1-norm is also established. Numerical results
are reported to verify theoretical findings.
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1. Introduction

The finite element method (FEM) is a type of handy and effective numerical meth-

ods for solving various industrial and engineering problems. Historically, the first fi-

nite element was proposed by Courant [16], which is now called the Courant ele-

ment. In this case, a finite element function is a continuous piecewise linear function

associated with a triangular mesh. However, only until the 1960s, Argyris, Clough,

Zienkiewicz et al. re-discovered the element and used it to study structure analysis

in engineering. The terminology finite element method was first raised in Clough’s

paper [15]. During the same period, the Chinese former mathematician Feng also pro-

posed and analyzed the finite element method independently, which was named by
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him as the finite difference scheme based on variational principle (cf. [20]). We refer

to [3, 10, 14, 34] and references therein for details about the comprehensive introduc-

tion of history, mathematical theories and applications of FEMs.

Following Ciarlet’s convention (cf. [14]), a finite element is a triple (K,PK ,NK).
Here, K ⊂ R

n (with n as a positive integer) is a bounded set with nonempty interior

and piecewise smooth boundary, PK is a finite-dimensional space of functions on K
and NK is a set of degrees of freedom (Dofs).

Let K be a triangle. The simplest choice of the Dofs NK is the evaluation at all

vertices of K. Then the Courant element can be represented by (K,P1(K),NK). If K
is a tetrahedron, the Courant element can be naturally extended to three dimensions

as (K,P1(K),NK) with NK involving the evaluation at all vertices of K.

An interesting problem is how to extend the Courant element to a general poly-

tope K in R
n with n ≥ 2 a positive integer. In some sense, the most recently developed

virtual element method (VEM) offered an answer to this issue (cf. [1, 4, 6, 9]). In fact,

if K is a polygon, a finite element (K,V1(K),NK) was introduced in [4], where

V1(K) =
{
v ∈ H1(K) : ∆v = 0, v|∂K ∈ V1(∂K)

}
, (1.1)

V1(∂K) =
{
v ∈ C(∂K) : v|e ∈ V1(e) = P1(e), ∀ e ⊂ ∂K

}
, (1.2)

while the set of Dofs consists of the function values at all vertices of K. If K is a tri-

angle, this finite element is nothing but the Courant element. However, for a general

polygon K, its shape function is implicitly defined, so this finite element is named as

virtual element. The similar analogue is devised in three dimensions (cf. [1,28]), where

the Dofs NK also consist of function values at all vertices, and the corresponding shape

function space V 1(K) is obtained by the harmonic extension from a boundary function

belonging to a boundary space W1(∂K) using the enhancement technique. Here,

V 1(K) =
{
v ∈ H1(K) ∩ C(K) : ∆v = 0, v|∂K ∈ W1(∂K)

}
,

W1(∂K) =
{
v ∈ C(∂K) : v|F ∈ W1(F ), ∀F ⊂ ∂K

}
,

W1(F ) =
{
v|F ∈ Ṽ1(F ) : (v,mF )F =

(
Π∇

F v,mF

)
F
, ∀mF ∈ M1(F )

}
,

Ṽ1(F ) =
{
v ∈ H1(F ) ∩ C(F ) : ∆F v ∈ P1(F ), v|∂F ∈ V1(∂F )

}
,

Π∇
F v is the standard elliptic projection, M1(K) is the set of all scaled monomial on

a domain K with degree up to 1 and V1(∂F ) is defined as in (1.2). In addition, applying

the enhancement technique to the shape function space on K, one can get another

virtual element (K,W1(K),NK) (cf. [1,5,8,12,21,28]), where

W1(K) =
{
v ∈ Ṽ1(K) : (v,mK)K =

(
Π∇

Kv,mK

)
K
, ∀mK ∈ M1(K)

}
,

Ṽ1(K) =
{
v ∈ H1(K) ∩ C(K) : ∆v ∈ P1(K), v|∂K ∈ W1(∂K)

}
.


